光伏发电功率超短期预测为电网调度煤电、储能等其他可调电源提供支持。针对气象因素随机性和光伏电池阵列积灰、老化导致光伏发电功率预测精度不高的问题,提出双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)和卡...光伏发电功率超短期预测为电网调度煤电、储能等其他可调电源提供支持。针对气象因素随机性和光伏电池阵列积灰、老化导致光伏发电功率预测精度不高的问题,提出双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)和卡尔曼滤波器(Kalman filter)结合的混合预测方法。Bi-LSTM模型学习气象因素特征,结合天气预报数据可减小气象因素造成的随机性误差;Kalman可以减小光伏电池阵列积灰、老化等因素带来的累积性误差。实例验证表明:长期运行条件下混合模型比单一Kalman、Bi-LSTM模型预测精度分别提高3.78%、2.50%。展开更多
准确的高铁沿线风速预测是铁路灾害预警系统的基础需求,为了提升应对和处理强风灾害致突发事件的能力,提出一种基于减法平均优化(subtraction average based optimizer,SABO)算法优化长短时记忆(long short-term memory,LSTM)神经网络...准确的高铁沿线风速预测是铁路灾害预警系统的基础需求,为了提升应对和处理强风灾害致突发事件的能力,提出一种基于减法平均优化(subtraction average based optimizer,SABO)算法优化长短时记忆(long short-term memory,LSTM)神经网络的高铁沿线短期风速预测方法。首先,针对风速非线性和非平稳特性,采用极小化极大(min-max,MM)方法对风速数据进行归一化处理;其次,采用SABO算法中的“-v”方法对LSTM模型的关键参数搜索寻优,并构建风速预测模型;最后,以中国宝兰高铁沿线风速采集点采集的实测风速数据为例,对模型进行有效性检验。实验结果表明:SABO算法的寻优效果更加良好,预测精度更高,所建模型的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(route mean square error,RMSE)分别仅为11.96%、1.23%和16.47%,决定系数(r-square,R^(2))为0.995。与其他模型相比,通过SABO算法优化后的LSTM神经网络在短期风速预测上具有较好的拟合效果和更高的预测精度,可为高铁沿线大风预测预警提供一种新的方法和思路。展开更多
文摘光伏发电功率超短期预测为电网调度煤电、储能等其他可调电源提供支持。针对气象因素随机性和光伏电池阵列积灰、老化导致光伏发电功率预测精度不高的问题,提出双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)和卡尔曼滤波器(Kalman filter)结合的混合预测方法。Bi-LSTM模型学习气象因素特征,结合天气预报数据可减小气象因素造成的随机性误差;Kalman可以减小光伏电池阵列积灰、老化等因素带来的累积性误差。实例验证表明:长期运行条件下混合模型比单一Kalman、Bi-LSTM模型预测精度分别提高3.78%、2.50%。
文摘准确的高铁沿线风速预测是铁路灾害预警系统的基础需求,为了提升应对和处理强风灾害致突发事件的能力,提出一种基于减法平均优化(subtraction average based optimizer,SABO)算法优化长短时记忆(long short-term memory,LSTM)神经网络的高铁沿线短期风速预测方法。首先,针对风速非线性和非平稳特性,采用极小化极大(min-max,MM)方法对风速数据进行归一化处理;其次,采用SABO算法中的“-v”方法对LSTM模型的关键参数搜索寻优,并构建风速预测模型;最后,以中国宝兰高铁沿线风速采集点采集的实测风速数据为例,对模型进行有效性检验。实验结果表明:SABO算法的寻优效果更加良好,预测精度更高,所建模型的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(route mean square error,RMSE)分别仅为11.96%、1.23%和16.47%,决定系数(r-square,R^(2))为0.995。与其他模型相比,通过SABO算法优化后的LSTM神经网络在短期风速预测上具有较好的拟合效果和更高的预测精度,可为高铁沿线大风预测预警提供一种新的方法和思路。