In real-time strategy(RTS)games,the ability of recognizing other players’goals is important for creating artifical intelligence(AI)players.However,most current goal recognition methods do not take the player’s decep...In real-time strategy(RTS)games,the ability of recognizing other players’goals is important for creating artifical intelligence(AI)players.However,most current goal recognition methods do not take the player’s deceptive behavior into account which often occurs in RTS game scenarios,resulting in poor recognition results.In order to solve this problem,this paper proposes goal recognition for deceptive agent,which is an extended goal recognition method applying the deductive reason method(from general to special)to model the deceptive agent’s behavioral strategy.First of all,the general deceptive behavior model is proposed to abstract features of deception,and then these features are applied to construct a behavior strategy that best matches the deceiver’s historical behavior data by the inverse reinforcement learning(IRL)method.Final,to interfere with the deceptive behavior implementation,we construct a game model to describe the confrontation scenario and the most effective interference measures.展开更多
Most language teachers will agree that motivation of the students is one of the most important factors influencing their success or failure in language learning. Corder’s phrase, “ Given motivation, anyone can learn...Most language teachers will agree that motivation of the students is one of the most important factors influencing their success or failure in language learning. Corder’s phrase, “ Given motivation, anyone can learn a language" brings out the importance of motivation and the way it can overcome unfavourable circumstances in other aspects of language learning. There have been overwhelming researches & literature on this area. However, the definition and study of motivation have not been without problem. This paper starts with a brief historical review on psychological approaches underlying motivational research, followed by the remarkable motivation theories. The third part is concerned with SL/FL motivation, which attempts to relate the findings on motivation with situation of China.展开更多
A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: dispers...A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.展开更多
文摘In real-time strategy(RTS)games,the ability of recognizing other players’goals is important for creating artifical intelligence(AI)players.However,most current goal recognition methods do not take the player’s deceptive behavior into account which often occurs in RTS game scenarios,resulting in poor recognition results.In order to solve this problem,this paper proposes goal recognition for deceptive agent,which is an extended goal recognition method applying the deductive reason method(from general to special)to model the deceptive agent’s behavioral strategy.First of all,the general deceptive behavior model is proposed to abstract features of deception,and then these features are applied to construct a behavior strategy that best matches the deceiver’s historical behavior data by the inverse reinforcement learning(IRL)method.Final,to interfere with the deceptive behavior implementation,we construct a game model to describe the confrontation scenario and the most effective interference measures.
文摘Most language teachers will agree that motivation of the students is one of the most important factors influencing their success or failure in language learning. Corder’s phrase, “ Given motivation, anyone can learn a language" brings out the importance of motivation and the way it can overcome unfavourable circumstances in other aspects of language learning. There have been overwhelming researches & literature on this area. However, the definition and study of motivation have not been without problem. This paper starts with a brief historical review on psychological approaches underlying motivational research, followed by the remarkable motivation theories. The third part is concerned with SL/FL motivation, which attempts to relate the findings on motivation with situation of China.
基金the National Natural Science Foundation of China (70572045).
文摘A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.