A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ...A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.展开更多
为解决标准Q学习算法收敛速度慢的问题,提出一种基于多个并行小脑模型(Cerebellar Model Articulation Controller:CMAC)神经网络的强化学习方法。该方法通过对输入状态变量进行分割,在不改变状态分辨率的前提下,降低每个状态变量的量...为解决标准Q学习算法收敛速度慢的问题,提出一种基于多个并行小脑模型(Cerebellar Model Articulation Controller:CMAC)神经网络的强化学习方法。该方法通过对输入状态变量进行分割,在不改变状态分辨率的前提下,降低每个状态变量的量化级数,有效减少CMAC的存储空间,将之与Q学习方法相结合,其输出用于逼近状态变量的Q值,从而提高了Q学习方法的学习速度和控制精度,并实现了连续状态的泛化。将该方法用于直线倒立摆的平衡控制中,仿真结果表明了其正确性和有效性。展开更多
基金Projects(60974031,60704011,61174128)supported by the National Natural Science Foundation of China
文摘A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.
文摘为解决标准Q学习算法收敛速度慢的问题,提出一种基于多个并行小脑模型(Cerebellar Model Articulation Controller:CMAC)神经网络的强化学习方法。该方法通过对输入状态变量进行分割,在不改变状态分辨率的前提下,降低每个状态变量的量化级数,有效减少CMAC的存储空间,将之与Q学习方法相结合,其输出用于逼近状态变量的Q值,从而提高了Q学习方法的学习速度和控制精度,并实现了连续状态的泛化。将该方法用于直线倒立摆的平衡控制中,仿真结果表明了其正确性和有效性。