Cotton,a crucial commercial fibre crop,depends heavily on seed-associated characteristics like germination rate,vigour,and resistance to post-harvest deterioration for both production and lint quality.Serious cellular...Cotton,a crucial commercial fibre crop,depends heavily on seed-associated characteristics like germination rate,vigour,and resistance to post-harvest deterioration for both production and lint quality.Serious cellular damage dur-ing post-harvest processes such as delinting,prolonged seedling emergence periods,decreased viability,increased susceptibility to infections,and lipid peroxidation during storage pose serious problems to seed quality.The perfor-mance of seeds and total crop productivity are adversely affected by these problems.Traditional methods of seed improvement,like physical scarification and seed priming,have demonstrated promise in raising cotton seed vigour and germination rates.Furthermore,modern approaches including plasma therapies,magnetic water treatments,and nanotechnology-based treatments have shown promise in improving seed quality and reducing environmen-tal stresses.By offering sustainable substitutes for conventional approaches,these cutting-edge procedures lessen the need for fungicides and other agrochemicals that pollute the environment.This review explores various con-ventional and emerging strategies to address the detrimental factors impacting cotton seed quality.It emphasizes the importance of integrating classical and advanced approaches to enhance germination,ensure robust crop estab-lishment,and achieve higher yields.In addition to promoting sustainable cotton production,this kind of integration helps preserve the ecosystem and create resilient farming methods.展开更多
The effect of coix seed flour(0%–25%)on the rheological and structural properties of wheat dough and noodle quality was investigated.The addition of coix seed flour was found to enhance the elasticity of dough,which ...The effect of coix seed flour(0%–25%)on the rheological and structural properties of wheat dough and noodle quality was investigated.The addition of coix seed flour was found to enhance the elasticity of dough,which may be attributed to the fact that small starch particles increase the filling capacity within the dough matrix.This increase subsequently resulted in more complete and uniform structure of dough.Moreover,setback viscosity rose to 1095 cP.The rapid water absorption of coix seed starch led to changes in the secondary structure of proteins in dough.The proportion ofβ-sheet markedly increased,whereas the proportion ofα-helix decreased with increasing level of coix seed flour substitution.Meanwhile,coix seed flour substitution significantly reduced the estimated glycemic index of noodles.Correlation analysis revealed that pasting parameters had significant effects on the evaluation of noodle quality.This study provides a foundation for researchers to substitute wheat flour with coix seed flour.展开更多
【Background】The application of beneficial-microbial seed soaking prior to sowing represents a novel technology that has not been employed in Lanzhou lily cultivation.We conducted an experiment to explore the impact ...【Background】The application of beneficial-microbial seed soaking prior to sowing represents a novel technology that has not been employed in Lanzhou lily cultivation.We conducted an experiment to explore the impact of this soaking method on the fungal and bacterial community structures using next-generation sequencing technology(NGS).【Methods】Lily bulbs were soaked in a seed treating agent containing beneficial microbes(SP treatment)for 4 hours.Subsequently,they were planted in soil in July and sampled in September to assess plant growth,rhizosphere soil physicochemical properties,and microorganism community structures.In addition,we employed the software PICRUSt and FUNGuild to predict bacterial pathways and fungal functions.【Results】Under SP treatment,there were significant alterations in fungi and bacteria community structures,accompanied by improved soil nutrient status.Notably,the relative abundance of dominant microorganism groups,such as the fungi Basidiomycota,Pseudeurotium,Cladophialophora,Microascus,and Dactylonectria,as well as the bacteria Proteobacteria,Chloroflexi,Ochrobactrium,Lysobacter,and RB41,underwent notable changes.Microorganism function prediction results indicated a reduction in pathotrophic fungi(including plant pathogens)and an increase in endophytic and saprotrophic fungi under SP treatment.Among the top 20 metabolism pathways,80%were upregulated in SP treatment compared to the CK.【Conclusions】Seed soaking with beneficial microbial strain promotes the growth of Lanzhou lily bulbs.The beneficial microorganisms play a crucial role in regulating soil microbial structures,enhancing the accumulation of endophytic fungi,reducing the abundance of pathogens,and improving soil functions.Furthermore,specific microbial groups are found to be involved in maintaining soil health.展开更多
Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with ...Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with seed shape is crucial for improving the seed and fiber quality in cotton.Results A total of 238 cotton accessions were evaluated in four different environments over a period of two years.Traits including thousand grain weight(TGW),aspect ratio(AR),seed length,seed width,diameter,and roundness demonstrated high heritability and significant genetic variation,as indicated by phenotypic analysis.The association analysis involved 145 simple sequence repeats(SSR)markers and identified 50 loci significantly associated with six traits related to seed shape.The markers MON_DPL0504aa and BNL2535ba were identified as influencing multiple traits,including aspect ratio and thousand grain weight.Notably,markers such as HAU2588a and MUSS422aa had considerable influence on seed diameter and roundness.The identified markers represented an average phenotypic variance between 3.92%for seed length and 16.54%for TGW.Conclusions The research finds key loci for seed shape-related traits in cotton,providing significant potential for marker-assisted breeding.These findings establish a framework for breeding initiatives focused on enhancing seed quality,hence advancing the cotton production.展开更多
Background Mepiquat chloride(MC)is a widely used plant growth regulator in cotton(Gossypium hirsutum L.).It regulates endogenous hormone content and crosstalk to control plant height and promote lateral root(LR)develo...Background Mepiquat chloride(MC)is a widely used plant growth regulator in cotton(Gossypium hirsutum L.).It regulates endogenous hormone content and crosstalk to control plant height and promote lateral root(LR)development.However,the roles of cytokinins(CTKs)in the MC-induced increase in LR number in cotton seedlings remain unclear.Therefore,in this study,whole-genome transcriptome analysis was performed to elucidate the molecular mechanisms,CTK transformation,and CTK signaling pathway response to MC in cotton roots.Results In the present study,MC reduced the contents of the active CTK trans-zeatin(tZ)and N^(6)-isopentenyladenine(iP)but increased the levels of the nucleoside CTK trans-zeatin riboside(tZR)and N^(6)-isopentenyladenine riboside(iPR).RNA-seq data showed that the CTK biosynthesis genes GhIPTs and active CTK catabolism genes GhCKXs were obviously upregulated after MC treatment.The CTK-activating enzyme gene GhLOGs was repressed compared with the control.Furthermore,MC inhibited the expression of GhAHK4 and GhARR2/12,which are involved in the CTK signaling pathway,and activated the IAA-IAA14-ARF7/19 signaling module.Meanwhile,MC increased the expression levels of genes involved in sucrose synthesis,the cell cycle,cell division,and cell wall biosynthesis pathways.Silencing the GhCKX family separately decreased the LR number and active indole-3-acetic acid(IAA)level.The expression levels of GhPIN1,GhARF7,GhARF19,GhLBD16,GhLBD18,GhLBD29,and GhLBD33 were downregulated,but GhARR2/12 and GhIAA14 were upregulated.The total content of active CTKs was noticeably increased.The results of silencing the GhLOGs family were opposite to those of silencing GhCKXs.Silencing GhARR12 could upregulate GhPIN1 expression and increase LR number.In addition,the silenced GhCKXs,GhLOGs,and GhARR12 were less responsive to MCinduced LR growth than the control.Conclusion These results suggested that MC treatment could upregulate CTK-nucleoside biosynthesis and CTK metabolism genes to decrease active CTK levels,promoting crosstalk between CTKs and auxin signaling pathways to enhance LR initiation.展开更多
Magnetic seeding agglomeration(MSA),i.e.,adding magnetic seeds and a low intensity pre-magnetization for fine agglomeration,was applied to the flotation of coal,pyrite and hematite ore slimes.Size analysis and flotati...Magnetic seeding agglomeration(MSA),i.e.,adding magnetic seeds and a low intensity pre-magnetization for fine agglomeration,was applied to the flotation of coal,pyrite and hematite ore slimes.Size analysis and flotation tests highlight that the MSA improved flotation recovery and kinetics of pyrite ore while causing some loss in selectivity,and in the presences of the polyacrylamide for coal and starch for hematite the agglomeration flotation was further strengthened due to the synergetic effect between the flocculants and magnetic seeds.Magnetism analyses and calculation confirmed the adsorption of magnetic seeds onto minerals,resulting in a decreased threshold magnetic field intensity for the MSA to happen.Then atomic force microscope(AFM)study found that there exists a long range force between magnetic seeds and minerals,which facilitates the adsorption of magnetic seeds on minerals.FTIR shows both the polyacrylamide and starch adsorbed onto minerals and magnetic seeds,thus acting as the bridging media between minerals and magnetic seeds,intensifying the agglomeration in flotation.Surface characterization of the MSA was understood by SEM imaging,and models of the MSA were proposed.展开更多
Background:Cottonseed oil and protein content as well as germination traits are major indicators of seed quality.However,the responses of these indicators to plant density and mepiquat chloride(MC)are still uncertain....Background:Cottonseed oil and protein content as well as germination traits are major indicators of seed quality.However,the responses of these indicators to plant density and mepiquat chloride(MC)are still uncertain.To investigate plant density and MC effects on cotto nseed yield and main quality parameters,we con ducted a twoyear field experiment including four plant densities(1.35,2.55,3.75 and 4.95 plants·m^-2)and two closes of MC(0 and 135g·hm^-2)in Dafeng,Jiangsu Province,in 2013 and 2014.Results:The application of MC reduced plant height,fruit branch length and fruiting branch number under different plant densities,resulting in a lower and more compact plant canopy.Cottonseed yield showed a nonlinear increase as plant density increasing and achieved the highest value at 3.75 plants·m^-2,regardless of MC application.No significant interactio ns were found between plant density and MC for cotton seed yield and quality parameters.The 100-seed weight,cottonseed oil content and vigor index significantly decreased as plant density increased,while these parameters significantly increased with MC applying under different plant densities.Seed vigor index was positively correlated with 100-seed weight and seed oil con tent across different plant densities and MC treatments.Conclusions:Thus,application of MC could realize a win-win situation between cottonseed yield and main quality parameters under various densities;and plant density of 3.75 plants·m^-2 combined with 135 g·hm^-2 of MC applying is optimal for high cottonseed yield and quality in this cotton production area.展开更多
According to the principle of belt seeding establishment of adhesive bonded fabric,applied indexes of belt seeding establishment effect were studied using carrier combination of several kinds of waste meterials under...According to the principle of belt seeding establishment of adhesive bonded fabric,applied indexes of belt seeding establishment effect were studied using carrier combination of several kinds of waste meterials under soil cover.The results showed that the effect depended on the coordinated characteristics of carrier combination from turfgrass and waste materials.It was testified that production of belt seeding was feasible using a certain kind of waste material carrier under given conditions.The study provided a scientific basis for applying evvironmental engineering to belt seeding establishment of waste materials and developing nwe industry of environmental protection.展开更多
During the period of dry nursery seedling raising of late double cropping indica rice in South China, both chemical fertilizer and farmyard manure did not show obvious effect on the growth of shoot and root in young s...During the period of dry nursery seedling raising of late double cropping indica rice in South China, both chemical fertilizer and farmyard manure did not show obvious effect on the growth of shoot and root in young seedlings at 4-leaf stage (18-day-old seedling), but had significant effects on root growth in old seedlings with 6-7 leaves (27-day-old seedling) at suitable seeding densities (65-125g m<sup>-2</sup>). There were satistically significant differences (at 0.01 or 0.05 levels)between treatments in root number and rooting ability of root-pruned seedlings.展开更多
In the literature there are many reports on the composition and properties of pumpkin seed oil; however, few is known about the effect of different stages of seed development on various fatty acid profiles in developi...In the literature there are many reports on the composition and properties of pumpkin seed oil; however, few is known about the effect of different stages of seed development on various fatty acid profiles in developing seeds. The objective of this study was to provide the changes of various fatty acid accumulations in seed oil obtained from the seeds of three pumpkin varieties belonging to the species Cucurbita maxima and Cucurbita pepo. Unsaturated acids(oleic and linoleic) were dominant in various fatty acids, which constituted 38.9%-49.1% and 29.4%-42.7% of the total fatty acids at seed maturity for three pumpkin varieties, respectively, while other fatty acid concentrations except for palmitic acid all did not reach 10%. Different varieties exhibited greater effect on various fatty acid contents and the total fatty acid contents in the seeds of pumpkin rather than the species. On the whole, palmitic acid profiles of the seed oil in three varieties all followed the fluctuant decrease during all the stages of seed development, but palmitoleic acid and the total fatty acid profiles of the seed oil in three varieties were just the opposite. Stearic, oleic and linoleic acid profiles of the seed oil in three varieties all experienced the third pattern that fluctuated during all the stages of seed development, but no significant differences in these three fatty acid concentrations were found from the beginning to the end. Linolenic acid concentrations of three varieties were on the decline and ultimately close to zero. Myristic and arachidic acid profiles of the seed oil followed different trends in three varieties. Among them, myristic and arachidic acid profiles of the seed oil of Yinhui-1 fluctuated downward all the time until seed maturity, but those of 0238-1 and Jinhui-2 completely changed oppositely.展开更多
Vacuum precision seed metering is the key part of vacuum seed planter. Planting performance of planter is affected by vacuum and air flow which are important parameters for choosing fan. Effects of qualification perce...Vacuum precision seed metering is the key part of vacuum seed planter. Planting performance of planter is affected by vacuum and air flow which are important parameters for choosing fan. Effects of qualification percent and miss percent on air chamber vacuum 3, 4, 5 and 6 kPa were studied at different operating speeds. The results showed that operating performance of the seed metering was excellent when air chamber vacuum was 5 and 6 kPa, which air flow was 7.4-8.0 m3·s-1 and 8.0-8.8 m3·s-1 , respectively.展开更多
Gibbsite precipitation from sodium aluminate solution was intensified by adding mixed industrial and self-prepared active seeds,and its mechanism was researched preliminarily.The interfacial properties of seed/alumina...Gibbsite precipitation from sodium aluminate solution was intensified by adding mixed industrial and self-prepared active seeds,and its mechanism was researched preliminarily.The interfacial properties of seed/aluminate solution were determined for separate industrial and active seed.Contact angles of seed/aluminate solution and the specific surface area of seeds were respectively measured by sessile drop and BET method,and the morphology and particle size of precipitates were recorded by SEM and laser diffraction.The results show that,compared with the industrial seed,the active seed has a better wettability,lower interfacial tension,and larger specific surface area,being conducive to enhancing gibbsite precipitation from sodium aluminate solution.SEM analysis of the precipitates indicates that the embedment and accumulation/agglomeration of extremely fine particles on the surface of coarse industrial seed can effectively control the content of fine particles in the precipitation product.With extra 3.1–4.6 g/L active seed,the gibbsite precipitation ratio was increased by 3.23%–3.92%.Moreover,the mass percentage of particles<45μm in precipitation product has even a slight decrease compared with that for the traditional precipitation product or of the industrial seed itself.The result presented is favorable to developing an intensified gibbsite precipitation process for commercial alumina manufacture.展开更多
Amaranthus retroflexus L. is a serious and widespread malignant weed in soybean fields in Heilongjiang Province. Exploring the dormancy characteristics of A. retroflexus L. seeds and the physiological response of its ...Amaranthus retroflexus L. is a serious and widespread malignant weed in soybean fields in Heilongjiang Province. Exploring the dormancy characteristics of A. retroflexus L. seeds and the physiological response of its seedlings to acifluorfen sodium can provide a basis for further researches on its resistance mechanism. Using newly harvested and stored A. retroflexus L. seeds for one year as experimental materials, the effects of different concentrations of HCl, NaOH, water temperature, gibberellic acid(GA) and polyethylene glycol(PEG) on the dormancy and germination of A. retroflexus L. seeds were studied. The sensitivity of A. retroflexus L.to acifluorfen sodium was determined using bioassay. The effects on leaf chlorophyll content and target enzyme activity were studied at a normal dosage of 360 g a.i. hm^(-2) and a doubling dosage of 720 g a.i. hm^(-2) of acifluorfen sodium. Newly harvested seeds exhibiting dormancy were soaked in water of various temperatures and in different concentrations of NaOH and HCl, which were ineffective in breaking the seed dormancy. GA could break seed dormancy, and the highest seed germination rate reached 93.33% when they were soaked at 3 000 mg·L^(-1) for 72 h and 4 000 mg·L^(-1) for 48 h. The drought stress was simulated with a 15%-25% polyethylene glycol solution, which had no significant effect on the seed germination rate. The GR_(50) value of acifluorfen sodium for A. retroflexus L. was 705.7 g a.i. hm^(-2), which was 1.96 times the recommended dose in the field. After the application of different doses of acifluorfen sodium, the chlorophyll content of A. retroflexus L. reached its minimum value 3 days after treatment(DAT), and then gradually increased. The activity of the target enzyme protoporphyrinogen oxidase(PPO) reached the highest value at 7 DAT under different dosages, and gradually returned to normal levels thereafter. Soaking with gibberellin was an effective method to break seed dormancy. A. retroflexus L. seeds had certain drought resistance during the germination process. A. retroflexus L. was not sensitive to acifluorfen sodium and acifluorfen sodium ether, and could not effectively inhibit the PPO activity, indicating that A. retroflexus L. had target resistance to acifluorfen sodium.展开更多
基金the Indian Council of Agriculture Research-National Agriculture Higher Education Program(No.A4/003026/2023)to carry out this work during the international faculty training program at Nanyang Technological University,Singapore,under the Institution Development Plan.
文摘Cotton,a crucial commercial fibre crop,depends heavily on seed-associated characteristics like germination rate,vigour,and resistance to post-harvest deterioration for both production and lint quality.Serious cellular damage dur-ing post-harvest processes such as delinting,prolonged seedling emergence periods,decreased viability,increased susceptibility to infections,and lipid peroxidation during storage pose serious problems to seed quality.The perfor-mance of seeds and total crop productivity are adversely affected by these problems.Traditional methods of seed improvement,like physical scarification and seed priming,have demonstrated promise in raising cotton seed vigour and germination rates.Furthermore,modern approaches including plasma therapies,magnetic water treatments,and nanotechnology-based treatments have shown promise in improving seed quality and reducing environmen-tal stresses.By offering sustainable substitutes for conventional approaches,these cutting-edge procedures lessen the need for fungicides and other agrochemicals that pollute the environment.This review explores various con-ventional and emerging strategies to address the detrimental factors impacting cotton seed quality.It emphasizes the importance of integrating classical and advanced approaches to enhance germination,ensure robust crop estab-lishment,and achieve higher yields.In addition to promoting sustainable cotton production,this kind of integration helps preserve the ecosystem and create resilient farming methods.
文摘The effect of coix seed flour(0%–25%)on the rheological and structural properties of wheat dough and noodle quality was investigated.The addition of coix seed flour was found to enhance the elasticity of dough,which may be attributed to the fact that small starch particles increase the filling capacity within the dough matrix.This increase subsequently resulted in more complete and uniform structure of dough.Moreover,setback viscosity rose to 1095 cP.The rapid water absorption of coix seed starch led to changes in the secondary structure of proteins in dough.The proportion ofβ-sheet markedly increased,whereas the proportion ofα-helix decreased with increasing level of coix seed flour substitution.Meanwhile,coix seed flour substitution significantly reduced the estimated glycemic index of noodles.Correlation analysis revealed that pasting parameters had significant effects on the evaluation of noodle quality.This study provides a foundation for researchers to substitute wheat flour with coix seed flour.
文摘【Background】The application of beneficial-microbial seed soaking prior to sowing represents a novel technology that has not been employed in Lanzhou lily cultivation.We conducted an experiment to explore the impact of this soaking method on the fungal and bacterial community structures using next-generation sequencing technology(NGS).【Methods】Lily bulbs were soaked in a seed treating agent containing beneficial microbes(SP treatment)for 4 hours.Subsequently,they were planted in soil in July and sampled in September to assess plant growth,rhizosphere soil physicochemical properties,and microorganism community structures.In addition,we employed the software PICRUSt and FUNGuild to predict bacterial pathways and fungal functions.【Results】Under SP treatment,there were significant alterations in fungi and bacteria community structures,accompanied by improved soil nutrient status.Notably,the relative abundance of dominant microorganism groups,such as the fungi Basidiomycota,Pseudeurotium,Cladophialophora,Microascus,and Dactylonectria,as well as the bacteria Proteobacteria,Chloroflexi,Ochrobactrium,Lysobacter,and RB41,underwent notable changes.Microorganism function prediction results indicated a reduction in pathotrophic fungi(including plant pathogens)and an increase in endophytic and saprotrophic fungi under SP treatment.Among the top 20 metabolism pathways,80%were upregulated in SP treatment compared to the CK.【Conclusions】Seed soaking with beneficial microbial strain promotes the growth of Lanzhou lily bulbs.The beneficial microorganisms play a crucial role in regulating soil microbial structures,enhancing the accumulation of endophytic fungi,reducing the abundance of pathogens,and improving soil functions.Furthermore,specific microbial groups are found to be involved in maintaining soil health.
基金supported by the Fund for BTNYGG(NYHXGG,2023AA102)the National Natural Science Foundation of China(32260510)+3 种基金the Key Project for Science,Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)Shihezi University high-level talent research project(RCZK202337)Science and Technology Major Project of the Department of Science and Technology of Xinjiang Uygur Autonomous region(2022A03004-1)the Key Programs for Science and Technology Development in Agricultural Field of Xinjiang Production and Construction Corps。
文摘Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with seed shape is crucial for improving the seed and fiber quality in cotton.Results A total of 238 cotton accessions were evaluated in four different environments over a period of two years.Traits including thousand grain weight(TGW),aspect ratio(AR),seed length,seed width,diameter,and roundness demonstrated high heritability and significant genetic variation,as indicated by phenotypic analysis.The association analysis involved 145 simple sequence repeats(SSR)markers and identified 50 loci significantly associated with six traits related to seed shape.The markers MON_DPL0504aa and BNL2535ba were identified as influencing multiple traits,including aspect ratio and thousand grain weight.Notably,markers such as HAU2588a and MUSS422aa had considerable influence on seed diameter and roundness.The identified markers represented an average phenotypic variance between 3.92%for seed length and 16.54%for TGW.Conclusions The research finds key loci for seed shape-related traits in cotton,providing significant potential for marker-assisted breeding.These findings establish a framework for breeding initiatives focused on enhancing seed quality,hence advancing the cotton production.
基金supported by the National Natural Science Foundation of China(Grant No.31471434)。
文摘Background Mepiquat chloride(MC)is a widely used plant growth regulator in cotton(Gossypium hirsutum L.).It regulates endogenous hormone content and crosstalk to control plant height and promote lateral root(LR)development.However,the roles of cytokinins(CTKs)in the MC-induced increase in LR number in cotton seedlings remain unclear.Therefore,in this study,whole-genome transcriptome analysis was performed to elucidate the molecular mechanisms,CTK transformation,and CTK signaling pathway response to MC in cotton roots.Results In the present study,MC reduced the contents of the active CTK trans-zeatin(tZ)and N^(6)-isopentenyladenine(iP)but increased the levels of the nucleoside CTK trans-zeatin riboside(tZR)and N^(6)-isopentenyladenine riboside(iPR).RNA-seq data showed that the CTK biosynthesis genes GhIPTs and active CTK catabolism genes GhCKXs were obviously upregulated after MC treatment.The CTK-activating enzyme gene GhLOGs was repressed compared with the control.Furthermore,MC inhibited the expression of GhAHK4 and GhARR2/12,which are involved in the CTK signaling pathway,and activated the IAA-IAA14-ARF7/19 signaling module.Meanwhile,MC increased the expression levels of genes involved in sucrose synthesis,the cell cycle,cell division,and cell wall biosynthesis pathways.Silencing the GhCKX family separately decreased the LR number and active indole-3-acetic acid(IAA)level.The expression levels of GhPIN1,GhARF7,GhARF19,GhLBD16,GhLBD18,GhLBD29,and GhLBD33 were downregulated,but GhARR2/12 and GhIAA14 were upregulated.The total content of active CTKs was noticeably increased.The results of silencing the GhLOGs family were opposite to those of silencing GhCKXs.Silencing GhARR12 could upregulate GhPIN1 expression and increase LR number.In addition,the silenced GhCKXs,GhLOGs,and GhARR12 were less responsive to MCinduced LR growth than the control.Conclusion These results suggested that MC treatment could upregulate CTK-nucleoside biosynthesis and CTK metabolism genes to decrease active CTK levels,promoting crosstalk between CTKs and auxin signaling pathways to enhance LR initiation.
基金Project(51274256)supported by the National Natural Science Foundation of China
文摘Magnetic seeding agglomeration(MSA),i.e.,adding magnetic seeds and a low intensity pre-magnetization for fine agglomeration,was applied to the flotation of coal,pyrite and hematite ore slimes.Size analysis and flotation tests highlight that the MSA improved flotation recovery and kinetics of pyrite ore while causing some loss in selectivity,and in the presences of the polyacrylamide for coal and starch for hematite the agglomeration flotation was further strengthened due to the synergetic effect between the flocculants and magnetic seeds.Magnetism analyses and calculation confirmed the adsorption of magnetic seeds onto minerals,resulting in a decreased threshold magnetic field intensity for the MSA to happen.Then atomic force microscope(AFM)study found that there exists a long range force between magnetic seeds and minerals,which facilitates the adsorption of magnetic seeds on minerals.FTIR shows both the polyacrylamide and starch adsorbed onto minerals and magnetic seeds,thus acting as the bridging media between minerals and magnetic seeds,intensifying the agglomeration in flotation.Surface characterization of the MSA was understood by SEM imaging,and models of the MSA were proposed.
基金financial support from the Special Fund for Agro-scientific Research in the Public Interest(201503109)the Fundamental Research Funds for the Central Universities(KYYJ201802)+1 种基金Jiangsu Collaborative Innovation Center for Modern Crop Production(JCIC-MCP)Jiangsu Overseas Research and Training Program for University Prominent Young and Middleaged Teachers and President(2016),China
文摘Background:Cottonseed oil and protein content as well as germination traits are major indicators of seed quality.However,the responses of these indicators to plant density and mepiquat chloride(MC)are still uncertain.To investigate plant density and MC effects on cotto nseed yield and main quality parameters,we con ducted a twoyear field experiment including four plant densities(1.35,2.55,3.75 and 4.95 plants·m^-2)and two closes of MC(0 and 135g·hm^-2)in Dafeng,Jiangsu Province,in 2013 and 2014.Results:The application of MC reduced plant height,fruit branch length and fruiting branch number under different plant densities,resulting in a lower and more compact plant canopy.Cottonseed yield showed a nonlinear increase as plant density increasing and achieved the highest value at 3.75 plants·m^-2,regardless of MC application.No significant interactio ns were found between plant density and MC for cotton seed yield and quality parameters.The 100-seed weight,cottonseed oil content and vigor index significantly decreased as plant density increased,while these parameters significantly increased with MC applying under different plant densities.Seed vigor index was positively correlated with 100-seed weight and seed oil con tent across different plant densities and MC treatments.Conclusions:Thus,application of MC could realize a win-win situation between cottonseed yield and main quality parameters under various densities;and plant density of 3.75 plants·m^-2 combined with 135 g·hm^-2 of MC applying is optimal for high cottonseed yield and quality in this cotton production area.
基金supported by National Science Foundation of China (5 98780 33) Young Science Foundation of Tianjin- 2 1Centuries(97370 5 111)
文摘According to the principle of belt seeding establishment of adhesive bonded fabric,applied indexes of belt seeding establishment effect were studied using carrier combination of several kinds of waste meterials under soil cover.The results showed that the effect depended on the coordinated characteristics of carrier combination from turfgrass and waste materials.It was testified that production of belt seeding was feasible using a certain kind of waste material carrier under given conditions.The study provided a scientific basis for applying evvironmental engineering to belt seeding establishment of waste materials and developing nwe industry of environmental protection.
文摘During the period of dry nursery seedling raising of late double cropping indica rice in South China, both chemical fertilizer and farmyard manure did not show obvious effect on the growth of shoot and root in young seedlings at 4-leaf stage (18-day-old seedling), but had significant effects on root growth in old seedlings with 6-7 leaves (27-day-old seedling) at suitable seeding densities (65-125g m<sup>-2</sup>). There were satistically significant differences (at 0.01 or 0.05 levels)between treatments in root number and rooting ability of root-pruned seedlings.
基金Supported by the Public Welfare Industry(Agricultural)Research Special Foundation of Agricultural Ministry of China(201303112)
文摘In the literature there are many reports on the composition and properties of pumpkin seed oil; however, few is known about the effect of different stages of seed development on various fatty acid profiles in developing seeds. The objective of this study was to provide the changes of various fatty acid accumulations in seed oil obtained from the seeds of three pumpkin varieties belonging to the species Cucurbita maxima and Cucurbita pepo. Unsaturated acids(oleic and linoleic) were dominant in various fatty acids, which constituted 38.9%-49.1% and 29.4%-42.7% of the total fatty acids at seed maturity for three pumpkin varieties, respectively, while other fatty acid concentrations except for palmitic acid all did not reach 10%. Different varieties exhibited greater effect on various fatty acid contents and the total fatty acid contents in the seeds of pumpkin rather than the species. On the whole, palmitic acid profiles of the seed oil in three varieties all followed the fluctuant decrease during all the stages of seed development, but palmitoleic acid and the total fatty acid profiles of the seed oil in three varieties were just the opposite. Stearic, oleic and linoleic acid profiles of the seed oil in three varieties all experienced the third pattern that fluctuated during all the stages of seed development, but no significant differences in these three fatty acid concentrations were found from the beginning to the end. Linolenic acid concentrations of three varieties were on the decline and ultimately close to zero. Myristic and arachidic acid profiles of the seed oil followed different trends in three varieties. Among them, myristic and arachidic acid profiles of the seed oil of Yinhui-1 fluctuated downward all the time until seed maturity, but those of 0238-1 and Jinhui-2 completely changed oppositely.
基金Supported by the Youth Science Foundation of Heilongjiang(QC2010119,QC2010028)the Science and Technology Innovation Person with Ability Study Special Foundation Project of Harbin(2011RFQXN054)+1 种基金the Graduate Student Innovative Scientific Research Project of Heilongjiang(YJSCX2011-064JHL)Division of Soybean Machinery,CARS(nycytx-004)
文摘Vacuum precision seed metering is the key part of vacuum seed planter. Planting performance of planter is affected by vacuum and air flow which are important parameters for choosing fan. Effects of qualification percent and miss percent on air chamber vacuum 3, 4, 5 and 6 kPa were studied at different operating speeds. The results showed that operating performance of the seed metering was excellent when air chamber vacuum was 5 and 6 kPa, which air flow was 7.4-8.0 m3·s-1 and 8.0-8.8 m3·s-1 , respectively.
基金Project(51604309)supported by the National Natural Science Foundation of ChinaProject(2015BAB04B01)supported by the National Key Technology R&D Program of China
文摘Gibbsite precipitation from sodium aluminate solution was intensified by adding mixed industrial and self-prepared active seeds,and its mechanism was researched preliminarily.The interfacial properties of seed/aluminate solution were determined for separate industrial and active seed.Contact angles of seed/aluminate solution and the specific surface area of seeds were respectively measured by sessile drop and BET method,and the morphology and particle size of precipitates were recorded by SEM and laser diffraction.The results show that,compared with the industrial seed,the active seed has a better wettability,lower interfacial tension,and larger specific surface area,being conducive to enhancing gibbsite precipitation from sodium aluminate solution.SEM analysis of the precipitates indicates that the embedment and accumulation/agglomeration of extremely fine particles on the surface of coarse industrial seed can effectively control the content of fine particles in the precipitation product.With extra 3.1–4.6 g/L active seed,the gibbsite precipitation ratio was increased by 3.23%–3.92%.Moreover,the mass percentage of particles<45μm in precipitation product has even a slight decrease compared with that for the traditional precipitation product or of the industrial seed itself.The result presented is favorable to developing an intensified gibbsite precipitation process for commercial alumina manufacture.
基金Supported by the National Major Special Project for the Cultivation of New Genetically Modified Biological Varieties(Topic ZX08011-003)。
文摘Amaranthus retroflexus L. is a serious and widespread malignant weed in soybean fields in Heilongjiang Province. Exploring the dormancy characteristics of A. retroflexus L. seeds and the physiological response of its seedlings to acifluorfen sodium can provide a basis for further researches on its resistance mechanism. Using newly harvested and stored A. retroflexus L. seeds for one year as experimental materials, the effects of different concentrations of HCl, NaOH, water temperature, gibberellic acid(GA) and polyethylene glycol(PEG) on the dormancy and germination of A. retroflexus L. seeds were studied. The sensitivity of A. retroflexus L.to acifluorfen sodium was determined using bioassay. The effects on leaf chlorophyll content and target enzyme activity were studied at a normal dosage of 360 g a.i. hm^(-2) and a doubling dosage of 720 g a.i. hm^(-2) of acifluorfen sodium. Newly harvested seeds exhibiting dormancy were soaked in water of various temperatures and in different concentrations of NaOH and HCl, which were ineffective in breaking the seed dormancy. GA could break seed dormancy, and the highest seed germination rate reached 93.33% when they were soaked at 3 000 mg·L^(-1) for 72 h and 4 000 mg·L^(-1) for 48 h. The drought stress was simulated with a 15%-25% polyethylene glycol solution, which had no significant effect on the seed germination rate. The GR_(50) value of acifluorfen sodium for A. retroflexus L. was 705.7 g a.i. hm^(-2), which was 1.96 times the recommended dose in the field. After the application of different doses of acifluorfen sodium, the chlorophyll content of A. retroflexus L. reached its minimum value 3 days after treatment(DAT), and then gradually increased. The activity of the target enzyme protoporphyrinogen oxidase(PPO) reached the highest value at 7 DAT under different dosages, and gradually returned to normal levels thereafter. Soaking with gibberellin was an effective method to break seed dormancy. A. retroflexus L. seeds had certain drought resistance during the germination process. A. retroflexus L. was not sensitive to acifluorfen sodium and acifluorfen sodium ether, and could not effectively inhibit the PPO activity, indicating that A. retroflexus L. had target resistance to acifluorfen sodium.