This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different ...This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.展开更多
This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of ext...This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of external disturbances. A sufficient condition is derived to make all agents achieve consensus while satisfying desired H∞ performance. Finally, numerical simulations are provided to show the effectiveness of our theoretical results.展开更多
In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impu...In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.展开更多
We introduce a new consensus pattern, named a successive lag cluster consensus(SLCC), which is a generalized pattern of successive lag consensus(SLC). By applying delay-dependent impulsive control, the SLCC of first-o...We introduce a new consensus pattern, named a successive lag cluster consensus(SLCC), which is a generalized pattern of successive lag consensus(SLC). By applying delay-dependent impulsive control, the SLCC of first-order and second-order multi-agent systems is discussed. Furthermore, based on graph theory and stability theory, some sufficient conditions for the stability of SLCC on multi-agent systems are obtained. Finally, several numerical examples are given to verify the correctness of our theoretical results.展开更多
This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which...This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.展开更多
In this paper, a novel robust impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the theory of impulsive functional differential equations and a new ...In this paper, a novel robust impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the theory of impulsive functional differential equations and a new differential inequality, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined region. Finally, some numerical simulations for the Lorenz system and Chen system are given to demonstrate the effectiveness and feasibility of the proposed method. Compared with the existing results based on so-called dual-stage impulsive control, the derived results reduce the complexity of impulsive controller, moreover, a larger stable region can be obtained under the same parameters, which can be shown in the numerical simulations finally.展开更多
In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedba...In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.展开更多
The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory...The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.展开更多
In this paper, a practical impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. By virtue of the new definition of synchronization and the theory of impulsive d...In this paper, a practical impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. By virtue of the new definition of synchronization and the theory of impulsive differential equations, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level. The idea and approach developed in this paper can provide a more practical framework for the synchronization between identical and different chaotic systems in parameter perturbation circumstances. Simulation results finally demonstrate the effectiveness of the method.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
文摘This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
基金supported by the National High Technology Research and Development Program of China (Grant Nos. 2007AA041104,2007AA041105 and 2007AA04Z163)
文摘This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of external disturbances. A sufficient condition is derived to make all agents achieve consensus while satisfying desired H∞ performance. Finally, numerical simulations are provided to show the effectiveness of our theoretical results.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006 and 60521003)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)+2 种基金Liaoning Provincial Natural Science Foundation of China (Grant No 20062018)State Key Development Program for Basic research of China (Grant No 2009CB320601)111 Project,China (Grant No B08015)
文摘In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61663006 and 11661026)the Guangxi Natural Science Foundation Program,China(Grant No.2015GXNSFBB139002)+1 种基金the Guangxi Key Laboratory of Cryptography and Information Security,China(Grant No.GCIS201612)the Innovation of GUET Graduate Education,China(Grant No.2018YJCX57)
文摘We introduce a new consensus pattern, named a successive lag cluster consensus(SLCC), which is a generalized pattern of successive lag consensus(SLC). By applying delay-dependent impulsive control, the SLCC of first-order and second-order multi-agent systems is discussed. Furthermore, based on graph theory and stability theory, some sufficient conditions for the stability of SLCC on multi-agent systems are obtained. Finally, several numerical examples are given to verify the correctness of our theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,and 61403168)
文摘This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No.CDJZR10170002)
文摘In this paper, a novel robust impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the theory of impulsive functional differential equations and a new differential inequality, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined region. Finally, some numerical simulations for the Lorenz system and Chen system are given to demonstrate the effectiveness and feasibility of the proposed method. Compared with the existing results based on so-called dual-stage impulsive control, the derived results reduce the complexity of impulsive controller, moreover, a larger stable region can be obtained under the same parameters, which can be shown in the numerical simulations finally.
基金Project supported by the National Natural Science Foundation of China(Grant No.61004101)the Natural Science Foundation Program of Guangxi Province,China(Grant No.2015GXNSFBB139002)+1 种基金the Graduate Innovation Project of Guilin University of Electronic Technology,China(Grant No.GDYCSZ201472)the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,China
文摘In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.
文摘The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.
基金Project supported by the National Natural Science foundation of China (Grant Nos 60534010, 60572070, 60774048 and 60728307)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No 60521003) the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)
文摘In this paper, a practical impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. By virtue of the new definition of synchronization and the theory of impulsive differential equations, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level. The idea and approach developed in this paper can provide a more practical framework for the synchronization between identical and different chaotic systems in parameter perturbation circumstances. Simulation results finally demonstrate the effectiveness of the method.