摘要
最优控制方法已成为自动驾驶横向运动控制的主流研究和工业部署方法。LQR方法拥有在线计算量小、实时性好等优点而被广泛使用,但是无法考虑时变参考和转向延迟。延时的存在会导致LQR方法在高速时失去稳定性,因此在解决该问题的同时维持LQR小计算量的特性十分必要。本文在保证实时性的前提下,解决了LQR无法考虑时变参考和转向延迟的问题。将道路曲率作为时变参考、转向延迟特性作为纯延时和1阶惯性环节考虑进跟踪误差状态方程中,将控制时域对应的KKT逆矩阵部分查表到实时求解器中,旨在减小计算量并保证控制器的实时性。仿真试验结果表明:所搭建的EqLPV-MPC控制器可以有效处理道路变曲率工况;相比于LQR方法,车速为72 km/h的双移线工况下横向误差降低39%,航向角误差下降52%,质心侧偏角减少28%。实车试验结果表明,在双移线工况下,本文所搭建的控制器可以将最大横向误差控制在0.1 m以内。
The optimal control method has become the mainstream research and industry deployment meth-od for lateral motion control in autonomous driving.The LQR method is widely used due to its advantages of low on-line computational load and good real-time performance,but it cannot consider time-varying references and steering delay.The presence of delay can cause the LQR method to lose stability at high speed,so it is essential to solve this problem while maintaining the characteristic of small computational load of LQR.In this paper,under the premise of ensuring real-time performance,the problem of LQR's inability to consider time-varying references and steering delay is solved.By incorporating road curvature as time-varying references,steering delay characteristics as pure de-lay,and first-order inertial section into the tracking error state equation,and by looking up the KKT inverse matrix part corresponding to the control time domain into the real-time solver,the aim is to reduce computational load and ensure controller real-time performance.The simulation results demonstrate that the constructed EqLPV-MPC con-troller can effectively handle road curvature changes.Compared to the LQR method,under the condition of dual lane change at a speed of 72 km/h,the lateral error decreases by 39%,with the heading error decreasing by 52%,and the lateral deviation of the center of mass decreasing by 28%.The results from real vehicle tests show that under dual lane change conditions,the controller constructed in this paper can keep the maximum lateral error within 0.1 m.
作者
杨正才
张慧泉
葛林鹤
孙天骏
Yang Zhengcai;Zhang Huiquan;Ge Linhe;Sun Tianjun(Hubei University of Automotive Technology,Hubei Key Laboratory of Automotive Power Train and Electronic Control,Shiyan 442002;Automotive Engineering College,Hubei University of Automotive Technology,Shiyan 442002;Jilin University,National Key Laboratory of Automotive Chassis Integration and Bionics,Changchun 130022)
出处
《汽车工程》
北大核心
2025年第1期44-54,共11页
Automotive Engineering
基金
汽车动力传动与电子控制湖北省重点实验室开放基金项目(ZDK12023A05)
湖北省武汉市科技重大专项(2022013702025184)
中央引导地方科技发展专项项目(2022BGE248)资助。
关键词
轨迹跟踪
模型预测控制
道路曲率
转向延迟
惯性环节
trajectory tracking
model predictive control
road curvature
steering lag
inertial element
作者简介
通信作者:葛林鹤,博士,E-mail:20230070@huat.edu.cn;通信作者:张慧泉,硕士研究生,E-mail:202211114@huat.edu.cn。