期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法
1
作者 张涛 魏彪 +2 位作者 李永健 马赫 何勇 《现代电子技术》 北大核心 2025年第12期54-60,共7页
针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO... 针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO)勘察阶段,通过非线性加权系数ω动态调节步长搜索因子,降低个体位置更新对局部信息的依赖,显著提高算法收敛速度与精度;最后,构建多尺度均值排列熵(MMPE)与峭度的融合指标作为适应度函数,增强故障特征敏感性。通过对不同的实测信号进行测试,结果表明,在强噪声干扰下,相较传统方法,所提方法可提前300 min(初期故障)和700 min(微弱故障)识别故障特征,验证了其工程实用性。 展开更多
关键词 正余弦算法 滚动轴承 故障诊断 改进北方苍鹰优化算法 多尺度均值排列熵 变分模态分解
在线阅读 下载PDF
基于IRCMMRDE和HHO-PNN的轴承损伤辨识模型 被引量:1
2
作者 桂芳 李健 刘磊 《机电工程》 北大核心 2025年第1期62-71,共10页
采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速... 采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速度计和麦克风两种类型的传感器,同时获得了滚动轴承不同工况下的振动和声音信号,构建了故障信息量更丰富的多通道信号;随后,提出了能够同步分析多通道信号的IRCMMRDE方法,并将其用于提取滚动轴承多通道信号的故障特征;接着,采用哈里斯鹰优化器(HHO)对概率神经网络的平滑因子进行了自适应寻优,构造了网络结构最优的PNN模型;最后,将损伤样本输入至HHO-PNN模型中,进行了故障的分类识别,完成了滚动轴承样本的故障辨识;并基于滚动轴承声振信号数据集,对基于IRCMMRDE-HHO-PNN的故障诊断方法的有效性进行了验证。研究结果表明:基于IRCMMRDE和HHO-PNN的故障诊断方法的准确率达到了99.6%,平均的识别准确率达到了99.8%,优于其他多种特征提取方法;同时,对多通道融合信号进行分析取得的准确率优于单个通道的信号,准确率分别提高了8.8%和4.8%;此外,HHO-PNN分类器模型的诊断性能优于其他分类模型,更具有泛化性和实用性。 展开更多
关键词 滚动轴承 故障诊断 改进精细复合多元多尺度反向散布熵 概率神经网络 多通道信号 哈里斯鹰优化器
在线阅读 下载PDF
基于精细化多尺度Kolmogorov熵与WOA-SVM的滚动轴承故障诊断
3
作者 李希垒 王冰 +1 位作者 胡雄 金鑫 《机床与液压》 北大核心 2025年第8期18-27,共10页
为了进一步提高滚动轴承故障诊断的准确率,提出一种基于精细化多尺度Kolmogorov熵和鲸鱼优化多分类支持向量机(FGMKE-WOA-SVM)的故障诊断方法。对振动信号进行精细化多尺度分解,提取各尺度子信号的Kolmogorov熵,构建多维故障特征向量,... 为了进一步提高滚动轴承故障诊断的准确率,提出一种基于精细化多尺度Kolmogorov熵和鲸鱼优化多分类支持向量机(FGMKE-WOA-SVM)的故障诊断方法。对振动信号进行精细化多尺度分解,提取各尺度子信号的Kolmogorov熵,构建多维故障特征向量,以此定量表征信号在不同分辨率下的复杂度。针对多分类支持向量机模型参数敏感问题,引入鲸鱼优化算法(WOA)优化惩罚因子和核函数参数,构建最优WOA-SVM模型。最后,基于江南大学数据集的实验表明:该方法能够有效分析参数对模型稳定性的影响,并在不平衡样本集上实现高精度故障诊断;与KNN、DT等模型及不同特征输入方法相比,所提方法计算速度快、诊断效率高,具有显著优越性。 展开更多
关键词 滚动轴承 故障诊断 特征选择 支持向量机 多尺度分析 Kolmogorov熵
在线阅读 下载PDF
基于特征模态分解及多尺度模糊散布熵的滚动轴承故障诊断
4
作者 梁翔宇 胡业林 +1 位作者 马向阳 宋晓 《科学技术与工程》 北大核心 2025年第1期176-185,共10页
针对复杂环境下的滚动轴承故障信息有效提取与辨识问题,提出一种基于特征模态分解(feature mode decomposition,FMD)及多尺度模糊散布熵(multiscale fuzzy dispersion entropy,MFDE)和斑马优化算法(zebra optimization algorithm,ZOA)... 针对复杂环境下的滚动轴承故障信息有效提取与辨识问题,提出一种基于特征模态分解(feature mode decomposition,FMD)及多尺度模糊散布熵(multiscale fuzzy dispersion entropy,MFDE)和斑马优化算法(zebra optimization algorithm,ZOA)优化支持向量机的滚动轴承故障诊断方法。为了解决FMD中关键参数不具有自适应性这一问题,以最小包络熵作为目标函数,采用白鲸优化算法(beluga whale optimization,BWO)优化FMD寻找最优参数组合,实现对故障信号的最优分解;引入多尺度模糊散布熵构建分解后不同模态下的特征向量;最后,将特征向量输入支持向量机中进行训练和识别,通过公开数据集和自制实验平台数据集验证了提出方法的有效性。 展开更多
关键词 特征模态分解 多尺度模糊散布熵 支持向量机 滚动轴承 故障诊断
在线阅读 下载PDF
一种多尺度极差熵结合ISOMAP的轴承故障诊断方法
5
作者 廖紫洋 陈勇旗 章涛 《机械科学与技术》 北大核心 2025年第8期1351-1358,共8页
针对滚动轴承故障信号难以提取,故障特征信号复杂、冗余信息多的问题,提出了多尺度极差熵(MRE)结合等距特征映射(ISOMAP)进行特征降维的优化方法。利用变分模态分解(VMD)将振动信号分解,得到指定数量的固有模态分量;采用MRE进行特征提取... 针对滚动轴承故障信号难以提取,故障特征信号复杂、冗余信息多的问题,提出了多尺度极差熵(MRE)结合等距特征映射(ISOMAP)进行特征降维的优化方法。利用变分模态分解(VMD)将振动信号分解,得到指定数量的固有模态分量;采用MRE进行特征提取,建立特征样本集;用ISOMAP将特征样本进行降维处理后进行故障分类。实验结果表明,本方法能够有效提取出滚动轴承故障特征信号,从而提高了滚动轴承故障诊断的准确性。 展开更多
关键词 滚动轴承 多尺度极差熵 特征降维 等距特征映射 故障诊断
在线阅读 下载PDF
基于SPA和IRCMMPE的旋转机械损伤识别方法
6
作者 李恒亮 张思婉 郭衡 《机电工程》 北大核心 2025年第6期1045-1054,共10页
基于单通道信号的旋转机械故障诊断方法的故障诊断效果通常比较依赖信号的质量,针对这一问题,提出了一种基于平滑先验分析(SPA)、改进精细复合多变量多尺度排列熵(IRCMMPE)和麻雀搜索算法优化支持向量机(SSA-SVM)的旋转机械损伤识别策... 基于单通道信号的旋转机械故障诊断方法的故障诊断效果通常比较依赖信号的质量,针对这一问题,提出了一种基于平滑先验分析(SPA)、改进精细复合多变量多尺度排列熵(IRCMMPE)和麻雀搜索算法优化支持向量机(SSA-SVM)的旋转机械损伤识别策略。首先,使用SPA将单通道信号分解为趋势项和去趋势项两种完全不同的分量,减少了分量的冗余,并将其组装为多通道信号以实现对样本的扩充;然后,采用IRCMMPE对多通道信号进行了特征提取以对比验证两个分量之间的相关性,获取了更能反映故障特性的特征;最后,将故障特征输入至SSA-SVM分类器中进行了故障识别,完成了对旋转机械的故障辨识和故障程度的判断,利用三个旋转机械数据集对SPA-IRCMMPE故障诊断方法的有效性进行了实验分析,并与其他故障诊断方法进行了对比研究。研究结果表明:SPA-IRCMMPE模型在诊断旋转机械不同故障类型时分别取得了100%和99.2%的识别准确率,平均识别准确率分别为99.76%和99.92%;而自制数据集的诊断精度达到了100%。相较于其他故障诊断方法,SPA-IRCMMPE模型仅需使用单个通道的振动信号且无需进行分量重要性评估,避免了分量取舍的问题,对振动信号的利用效率较高。 展开更多
关键词 旋转机械单通道信号 故障诊断 麻雀搜索算法优化支持向量机 改进精细复合多变量多尺度排列熵 平滑先验分析 离心泵 滚动轴承
在线阅读 下载PDF
基于全映射复合多尺度散布熵的滚动轴承故障诊断
7
作者 杨彩红 张清华 +1 位作者 郭文正 陈长捷 《轴承》 北大核心 2024年第8期74-79,共6页
为有效提取滚动轴承振动数据中的非平稳故障特征,将复合多尺度散布熵(CMDE)中的不同映射方式进行集成,形成了一种新的测量轴承振动信号复杂度和自相似度的方法,即全映射复合多尺度散布熵(FCMDE)。在此基础上,提出了基于FCMDE和k近邻(KNN... 为有效提取滚动轴承振动数据中的非平稳故障特征,将复合多尺度散布熵(CMDE)中的不同映射方式进行集成,形成了一种新的测量轴承振动信号复杂度和自相似度的方法,即全映射复合多尺度散布熵(FCMDE)。在此基础上,提出了基于FCMDE和k近邻(KNN)的滚动轴承故障诊断方法,利用FCMDE计算轴承振动信号的熵值并提取轴承的故障特征,将高维故障特征输入KNN分类器中进行滚动轴承的故障识别,采用西储大学和江南大学轴承数据集的验证结果表明,FCMDE方法能够有效识别滚动轴承的故障类型,准确率分别达到了100%和95.83%。 展开更多
关键词 滚动轴承 故障诊断 特征提取 映射 多尺度分析 近邻
在线阅读 下载PDF
基于最大均值差异的卷积神经网络故障诊断模型 被引量:3
8
作者 包从望 车守全 +2 位作者 刘永志 陈俊 张彩红 《机电工程》 CAS 北大核心 2024年第3期445-454,共10页
针对工程场景中轴承故障数据采集困难,小样本下轴承故障诊断准确率较低且稳定性不高的问题,提出了一种小样本下滚动轴承故障的诊断方法,即基于最大均值差异(MMD)的卷积神经网络(CNN)诊断模型(方法)。首先,根据轴承故障机理,获取了滚动... 针对工程场景中轴承故障数据采集困难,小样本下轴承故障诊断准确率较低且稳定性不高的问题,提出了一种小样本下滚动轴承故障的诊断方法,即基于最大均值差异(MMD)的卷积神经网络(CNN)诊断模型(方法)。首先,根据轴承故障机理,获取了滚动轴承故障的仿真信号,基于生成式对抗网络构建了仿真信号与少量真实样本间的对抗训练模型,得到了伪域样本,并将其扩充为训练数据集;其次,以交叉熵损失和最大均值差异(MMD)为卷积神经网络(CNN)的优化准则,引入了缩放因子,对网络进行了动态优化,根据测试结果选取缩放因子为0.05作为最优网络结构参数,构建了故障诊断的训练模型;最后,将结构均为1024个数据点的伪域样本和真实样本共同构成模型的训练集,对其进行了归一化处理,然后将其输入到构建的网络模型中,并以MMD作为约束,进行了卷积、池化操作,以实现特征提取的目的,经反向传播对模型进行了优化,实现了诊断模型参数的迭代更新目标。研究结果表明:基于MMD的CNN诊断模型(方法)对小样本下轴承的故障诊断识别精度有明显的改善,当样本数仅为16时,识别率可达95%以上,证明该方法在小样本下的轴承故障诊断中依然能获得较高的故障识别率。 展开更多
关键词 滚动轴承 故障诊断 小样本 生成式对抗网络 卷积神经网络 最大均值差异 交叉熵损失
在线阅读 下载PDF
基于EMATE和POA-ELM的声音信号故障诊断方法 被引量:3
9
作者 徐浙君 王凯 +1 位作者 罗少杰 崔炳荣 《机电工程》 CAS 北大核心 2024年第6期956-968,共13页
常规的工程机械故障诊断方法一般需对振动信号进行分析,但采集振动信号时需要使振动传感器与工程机械相接触,在某些情况下工程机械表面不适合安装传感器,如设备的温度较高或者传感器的安装空间有限。针对这些问题,以声音信号作为故障诊... 常规的工程机械故障诊断方法一般需对振动信号进行分析,但采集振动信号时需要使振动传感器与工程机械相接触,在某些情况下工程机械表面不适合安装传感器,如设备的温度较高或者传感器的安装空间有限。针对这些问题,以声音信号作为故障诊断对象,提出了一种基于增强多尺度注意熵(EMATE)和鹈鹕优化算法优化极限学习机(POA-ELM)的工程机械故障诊断方法。首先,利用声音传感器采集了工程机械不同故障的声音信号,避免了振动传感器存在的接触式采集缺陷;然后,利用EMATE提取了声音信号中的故障信息,建立了表征工程机械不同故障状态的特征向量;接着,鉴于ELM的参数需要优化的问题,采用POA对ELM的关键参数进行了寻优,建立了参数自适应设置的ELM分类模型;最后,利用POA-ELM分类器对故障特征进行了辨识,实现了工程机械的故障识别,并利用往复压缩机和滚动轴承的声音信号数据集对基于EMATE-POA-ELM的故障诊断方法的有效性进行了验证。研究结果表明:将EMATE方法作为故障特征提取指标能够取得100%和99.23%的识别准确率,且特征提取的时间仅为53.88 s和172.47 s;与多尺度注意熵、复合多尺度注意熵、时移多尺度注意熵等指标相比,EMATE的平均故障识别准确率更高,并具有更好的综合性能。 展开更多
关键词 工程机械 往复压缩机 滚动轴承 故障数据集 增强多尺度注意熵 故障诊断 鹈鹕优化算法优化极限学习机
在线阅读 下载PDF
多尺度模糊熵及其在滚动轴承故障诊断中的应用 被引量:108
10
作者 郑近德 陈敏均 +1 位作者 程军圣 杨宇 《振动工程学报》 EI CSCD 北大核心 2014年第1期145-151,共7页
提出了一种新的时间序列复杂性度量的方法——多尺度模糊熵(multiscale fuzzy entropy,简称MFE)。多尺度模糊熵是基于模糊熵而定义的。模糊熵作为样本熵的改进,是对时间序列复杂性和无规则程度的度量,而多尺度模糊熵则在模糊熵的基础上... 提出了一种新的时间序列复杂性度量的方法——多尺度模糊熵(multiscale fuzzy entropy,简称MFE)。多尺度模糊熵是基于模糊熵而定义的。模糊熵作为样本熵的改进,是对时间序列复杂性和无规则程度的度量,而多尺度模糊熵则在模糊熵的基础上引入了尺度因子,是对时间序列在不同尺度因子下复杂性的量度。与样本熵、模糊熵和分形维数等其他表征复杂性的非线性动力学方法相比,多尺度模糊熵包含更多时间模式信息。论文首先介绍了模糊熵和多尺度模糊熵的概念,并将其应用于滚动轴承振动信号复杂性的量度,由此提出了一种基于多尺度模糊熵和支持向量机的滚动轴承故障诊断方法。试验数据分析表明,新提出的方法能有效地提取故障特征,实现故障类型的诊断。 展开更多
关键词 故障诊断 滚动轴承 模糊熵 多尺度模糊熵 复杂性
在线阅读 下载PDF
基于多尺度熵的滚动轴承故障诊断方法 被引量:38
11
作者 郑近德 程军圣 杨宇 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期38-41,共4页
针对滚动轴承故障振动信号具有不同复杂性的特点,提出了一种新的基于多尺度熵(multi-scale entropy,简称MSE)和支持向量机的滚动轴承故障诊断方法.该方法首先利用MSE方法对滚动轴承不同类型振动信号进行故障特征提取,然后与样本熵方法... 针对滚动轴承故障振动信号具有不同复杂性的特点,提出了一种新的基于多尺度熵(multi-scale entropy,简称MSE)和支持向量机的滚动轴承故障诊断方法.该方法首先利用MSE方法对滚动轴承不同类型振动信号进行故障特征提取,然后与样本熵方法对比说明MSE方法相对于样本熵方法的优势,最后通过适合小样本分类的支持向量机作为分类器来识别滚动轴承故障类型.对实验数据分析的结果表明,该方法能有效地实现滚动轴承故障类型的诊断. 展开更多
关键词 样本熵 多尺度熵 滚动轴承 故障诊断 复杂性
在线阅读 下载PDF
基于小波包样本熵的滚动轴承故障特征提取 被引量:58
12
作者 苏文胜 王奉涛 +3 位作者 朱泓 郭正刚 张志新 张洪印 《振动.测试与诊断》 EI CSCD 北大核心 2011年第2期162-166,263,共5页
将样本熵引入故障诊断领域,讨论了样本熵的性能和计算参数的选择。结合小波包分解和样本熵,提出了一种新的滚动轴承故障特征提取方法。首先对轴承振动信号进行小波包分解;然后对归一化能量最大的子带进行重构,计算重构信号的样本熵;最... 将样本熵引入故障诊断领域,讨论了样本熵的性能和计算参数的选择。结合小波包分解和样本熵,提出了一种新的滚动轴承故障特征提取方法。首先对轴承振动信号进行小波包分解;然后对归一化能量最大的子带进行重构,计算重构信号的样本熵;最后通过样本熵评价故障状态。滚动轴承故障诊断实例验证了该方法的有效性。 展开更多
关键词 小波包分解 样本熵 滚动轴承 故障诊断
在线阅读 下载PDF
基于广义复合多尺度排列熵与PCA的滚动轴承故障诊断方法 被引量:29
13
作者 郑近德 刘涛 +1 位作者 孟瑞 刘庆运 《振动与冲击》 EI CSCD 北大核心 2018年第20期61-66,共6页
多尺度排列熵能够有效地反映滚动轴承振动信号的随机性变化和非线性动力学突变行为。针对其多尺度过程中粗粒化方式的不足,提出了广义复合多尺度排列熵(Generalized Composite Multiscale Permutation Entropy,GCMPE)。研究了参数对GCMP... 多尺度排列熵能够有效地反映滚动轴承振动信号的随机性变化和非线性动力学突变行为。针对其多尺度过程中粗粒化方式的不足,提出了广义复合多尺度排列熵(Generalized Composite Multiscale Permutation Entropy,GCMPE)。研究了参数对GCMPE计算的影响,并通过分析仿真数据将GCMPE与MPE进行了对比。将GCMPE应用于滚动轴承非线性故障特征的提取,提出一种基于GCMPE、主元分析和支持向量机的滚动轴承智能故障诊断方法。将提出的方法应用于实验数据分析,结果表明,所提方法能够有效地实现滚动轴承故障诊断,且故障识别率较高。 展开更多
关键词 排列熵 多尺度排列熵 主分量分析 滚动轴承 故障诊断
在线阅读 下载PDF
滚动轴承的MSE和PNN故障诊断方法 被引量:16
14
作者 陈慧 张磊 +1 位作者 熊国良 周继慧 《噪声与振动控制》 CSCD 2014年第6期169-173,共5页
针对滚动轴承不同运行状态振动信号具有不同复杂性的特点,提出一种新的基于多尺度熵(multiscale entropy,MSE)和概率神经网络(probabilistic neural networks,PNN)的滚动轴承故障诊断方法。该方法首先利用MSE方法对滚动轴承振动信号进... 针对滚动轴承不同运行状态振动信号具有不同复杂性的特点,提出一种新的基于多尺度熵(multiscale entropy,MSE)和概率神经网络(probabilistic neural networks,PNN)的滚动轴承故障诊断方法。该方法首先利用MSE方法对滚动轴承振动信号进行特征提取,并将其作为PNN神经网络的输入,再利用PNN自动识别轴承故障类型及故障程度。实验数据包括不同故障类型和不同故障程度样本,结果表明,相比于小波包分解和PNN结合的诊断方法,提出的方法具有更高的诊断精度,能有效实现滚动轴承故障类型及程度的诊断。 展开更多
关键词 振动与波 多尺度熵 概率神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
基于DLMD样本熵和模糊聚类的滚动轴承故障诊断 被引量:9
15
作者 孟宗 王亚超 王晓燕 《中国机械工程》 EI CAS CSCD 北大核心 2014年第19期2634-2641,共8页
针对传统的局部均值分解(LMD)方法不能有效提取微弱高频信号成分的问题,提出了一种基于微分的微分局部均值分解(DLMD)方法,在此基础上,将DLMD、样本熵和模糊聚类分析相结合,提出了一种基于DLMD样本熵和模糊聚类的滚动轴承故障诊断方法... 针对传统的局部均值分解(LMD)方法不能有效提取微弱高频信号成分的问题,提出了一种基于微分的微分局部均值分解(DLMD)方法,在此基础上,将DLMD、样本熵和模糊聚类分析相结合,提出了一种基于DLMD样本熵和模糊聚类的滚动轴承故障诊断方法。该方法首先对滚动轴承振动信号进行微分局部均值分解,得到若干具有物理意义的乘积函数(PF)分量,然后求取各PF分量的样本熵并将其作为特征向量,最后通过模糊聚类对特征向量进行识别分类。实验结果表明,基于DLMD样本熵和模糊聚类相结合的方法能够准确、有效地对滚动轴承故障信号进行识别分类。 展开更多
关键词 故障诊断 滚动轴承 微分局部均值分解 样本熵 模糊聚类
在线阅读 下载PDF
本征时间尺度排序熵及其在滚动轴承故障诊断中的应用 被引量:8
16
作者 谢平 江国乾 +1 位作者 李兴林 李小俚 《燕山大学学报》 CAS 2013年第2期179-184,共6页
针对滚动轴承故障振动信号的非平稳、非线性特性,将经验模态分解方法和排序熵有机结合,提出一种新的基于自适应尺度的复杂度参数——本征时间尺度排序熵,用于描述不同本征模态分量的复杂程度,从而实现故障特征的量化描述。首先,将原始... 针对滚动轴承故障振动信号的非平稳、非线性特性,将经验模态分解方法和排序熵有机结合,提出一种新的基于自适应尺度的复杂度参数——本征时间尺度排序熵,用于描述不同本征模态分量的复杂程度,从而实现故障特征的量化描述。首先,将原始振动信号经过EMD分解得到若干本征模态分量,然后分别对各本征模态分量计算排序熵,即可得到不同本征时间尺度排序熵,最后利用该参数实现不同故障状态的有效区分与识别。实例分析结果表明了该方法的有效性和实用性,从而为机械设备状态监测与故障诊断提供了一种有效途径。 展开更多
关键词 经验模态分解 复杂度 排序熵 故障诊断 滚动轴承
在线阅读 下载PDF
基于DT-CWT自适应Teager能量谱的轴承早期故障诊断 被引量:5
17
作者 任学平 王朝阁 +1 位作者 张玉皓 王建国 《振动.测试与诊断》 EI CSCD 北大核心 2017年第4期735-742,共8页
针对滚动轴承早期故障特征信息难以识别以及带通滤波器参数设置依赖使用者经验等造成共振带不能有效确定并自适应提取的问题,提出了频带幅值熵的概念。在此基础上,将双树复小波变换和Teager能量谱结合,提出了基于双树复小波自适应Teage... 针对滚动轴承早期故障特征信息难以识别以及带通滤波器参数设置依赖使用者经验等造成共振带不能有效确定并自适应提取的问题,提出了频带幅值熵的概念。在此基础上,将双树复小波变换和Teager能量谱结合,提出了基于双树复小波自适应Teager能量谱的早期故障诊断方法。首先,利用双树复小波将采集到的振动信号分解为不同频带的子信号,并计算各子带的频带幅值熵;然后,将熵值按升序排列后依次作为阈值,提取频带幅值熵大于阈值的子带,依据峭度指标确定最佳阈值,从而自适应并且有效地提取出共振带;最后,对共振带进行Teager能量谱分析,即可从中准确地识别出轴承的故障特征频率。通过信号仿真与实验数据分析验证了该方法的有效性。 展开更多
关键词 滚动轴承 双树复小波 频带幅值熵 Teager能量谱 自适应共振带提取 故障诊断
在线阅读 下载PDF
基于InMPE和MFO-SVM的变负载滚动轴承故障诊断 被引量:3
18
作者 袁建明 刘宇 +1 位作者 胡志辉 王磊 《机电工程》 CAS 北大核心 2023年第8期1185-1193,共9页
由于在变负载工况下,提取滚动轴承故障特征较为困难,且其故障识别准确率也较低,为此,提出了一种基于插值多尺度排列熵(InMPE)和飞蛾火焰优化支持向量机(MFO-SVM)的滚动轴承故障诊断方法。首先,在粗粒化时采用三次样条插值代替传统多尺... 由于在变负载工况下,提取滚动轴承故障特征较为困难,且其故障识别准确率也较低,为此,提出了一种基于插值多尺度排列熵(InMPE)和飞蛾火焰优化支持向量机(MFO-SVM)的滚动轴承故障诊断方法。首先,在粗粒化时采用三次样条插值代替传统多尺度排列熵(MPE)中的线性插值,设计了InMPE算法,利用美国凯斯西储大学(CWRU)轴承数据集,分析了不同序列长度、嵌入维数和负载对InMPE的影响;然后,使用飞蛾火焰算法(MFO)优化了支持向量机(SVM),构建了基于InMPE和MFO-SVM的故障诊断模型;最后,搭建了轴承故障诊断试验台,制作了变负载工况下滚动轴承故障特征样本集,对基于InMPE与MFO-SVM的故障诊断方法的有效性和先进性进行了验证。研究结果表明:在变负载工况下,采用基于InMPE与MFO-SVM方法所得的故障识别准确率达到了98.5%,而采用传统MPE方法所得的故障识别准确率为95.9%;在噪声背景下,采用基于InMPE与MFO-SVM方法所得的识别准确率为92.4%,优于后者的80.0%准确率;证明基于InMPE与MFO-SVM的方法能有效识别出滚动轴承的故障信息,且对噪声具有较好的鲁棒性。 展开更多
关键词 滚动轴承 故障诊断 变负载工况 多尺度排列熵 插值多尺度排列熵 飞蛾火焰算法 支持向量机
在线阅读 下载PDF
基于VMD-ICMSE和半监督判别SOINN L-Isomap的滚动轴承故障诊断 被引量:4
19
作者 戚晓利 王振亚 +2 位作者 吴保林 叶绪丹 潘紫微 《振动与冲击》 EI CSCD 北大核心 2020年第4期252-260,共9页
针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从... 针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从复杂域提取振动信号的故障特征,构建高维故障特征集;采用SSDSL-Isomap方法对高维故障特征集进行维数约简,提取出利于识别的低维、敏感故障特征子集;应用粒子群优化极限学习机(PSO-ELM)分类器对低维故障特征进行故障识别,判别故障类型。VMD-ICMSE方法集成了VMD自适应分解非线性信号与ICMSE衡量时间序列复杂性程度的优势,提高故障特征提取能力;SSDSL-Isomap方法综合了全局流形结构、半监督型双约束图构建以及SOINN界标点选取的优点,增强故障分类能力。调心球轴承故障诊断实验分析结果表明,该方法对实验数据的故障识别率达到100%。 展开更多
关键词 故障诊断 滚动轴承 SSDSL-Isomap 变分模态分解(VMD) 改进复合多尺度熵(ICMSE) 粒子群优化极限学习机(PSO-ELM)
在线阅读 下载PDF
基于MCKD和CEEMDAN样本熵的滚动轴承故障诊断 被引量:8
20
作者 金妍 《制造技术与机床》 北大核心 2019年第3期118-123,共6页
针对滚动轴承故障特征微弱以及振动信号的非平稳性,提出一种基于最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)和自适应白噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive ... 针对滚动轴承故障特征微弱以及振动信号的非平稳性,提出一种基于最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)和自适应白噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)样本熵相结合的滚动轴承故障诊断方法。首先采用MCKD算法降低滚动轴承信号内的噪声干扰,突出信号中的冲击特性;然后利用CEEMDAN方法对降噪信号进行分解,根据峭度-相关系数准则选择包含主要故障信息的敏感固有模态函数(intrinsic mode function,IMF)分量;计算各敏感IMF分量的样本熵构成高维特征向量;最后将高维特征向量作为支持向量机(support vector machine,SVM)的输入,对滚动轴承的工作状态和故障类型进行识别。通过实测滚动轴承故障信号的分析,证明了所提方法有效性,并为此类问题的解决提供了一种可行方法。 展开更多
关键词 最大相关峭度解卷积 自适应白噪声完备经验模态分解 样本熵 滚动轴承 故障诊断
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部