A highly sensitive SPE-liquid/liquid extraction RPLC method has been developed for the analysis of 6β-hydroxycortisol and cortisol in the urine of cancer patients. Methods: After SPE column purification and liquid-l...A highly sensitive SPE-liquid/liquid extraction RPLC method has been developed for the analysis of 6β-hydroxycortisol and cortisol in the urine of cancer patients. Methods: After SPE column purification and liquid-liquid extraction, the sample test solutions were analyzed with RPLC using a C18 analytical column. This improved analytical method has been validated for linearity, accuracy (recovery from urine), repeatability (within-day and between-day precision), specificity, sensitivity, and stability. This SPE-liquid/liquid extraction-RPLC is rapid, simple, accurate and reproducible. The technique is particularly useful for monitoring the CYP3A activity of cancer patients in clinical settings. The results are expressed as the ratio of 6β-hydroxycortisol to cortisol. Results: The CYP3A activity from a total of 153 samples was measured using this improved method. Considerable variation in the CYP3A activity of different cancer patients has been documented. Thus, personalized medical treatment based on the individual metabolic enzyme activity level is necessary. Conclusion: This new analytical method facilitates such individualized medical treatments.展开更多
以5μm大孔硅胶为基质,CuBr/Bpy为催化体系,采用原子转移自由基聚合(Atom transfer radical polymerization,ATRP)技术将甲基丙烯酸月桂酯(LMA)键合到硅胶表面,制得Sil-LMA反相作用色谱固定相。采用元素分析对该固定相进行表征,以芳香...以5μm大孔硅胶为基质,CuBr/Bpy为催化体系,采用原子转移自由基聚合(Atom transfer radical polymerization,ATRP)技术将甲基丙烯酸月桂酯(LMA)键合到硅胶表面,制得Sil-LMA反相作用色谱固定相。采用元素分析对该固定相进行表征,以芳香族化合物为溶质,甲醇-水为流动相,对该键合相的疏水选择性进行了考察。详细研究了甲醇浓度和温度对溶质保留行为的影响,以胺类、酚类化合物为溶质,评价了其色谱性能,并计算了溶质保留过程的热力学参数。经元素分析测得该填料的接枝量高达2.323 3 mg/m2。实验结果表明,在反相模式下该固定相可基线分离5种胺类化合物和5种酚类化合物。与C18反相柱相比,该合成柱的分离时间缩短且分离效果较好。该固定相具有很好的反相色谱性能,符合反相保留机理。展开更多
基金supported by the Shanghai Pharmaceutical Association
文摘A highly sensitive SPE-liquid/liquid extraction RPLC method has been developed for the analysis of 6β-hydroxycortisol and cortisol in the urine of cancer patients. Methods: After SPE column purification and liquid-liquid extraction, the sample test solutions were analyzed with RPLC using a C18 analytical column. This improved analytical method has been validated for linearity, accuracy (recovery from urine), repeatability (within-day and between-day precision), specificity, sensitivity, and stability. This SPE-liquid/liquid extraction-RPLC is rapid, simple, accurate and reproducible. The technique is particularly useful for monitoring the CYP3A activity of cancer patients in clinical settings. The results are expressed as the ratio of 6β-hydroxycortisol to cortisol. Results: The CYP3A activity from a total of 153 samples was measured using this improved method. Considerable variation in the CYP3A activity of different cancer patients has been documented. Thus, personalized medical treatment based on the individual metabolic enzyme activity level is necessary. Conclusion: This new analytical method facilitates such individualized medical treatments.