期刊文献+
共找到3,323篇文章
< 1 2 167 >
每页显示 20 50 100
一种基于long short-term memory的唇语识别方法 被引量:4
1
作者 马宁 田国栋 周曦 《中国科学院大学学报(中英文)》 CSCD 北大核心 2018年第1期109-117,共9页
唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往... 唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往大多数的方法从嘴唇外表信息入手。本方法用嘴唇关键点坐标描述嘴唇形变信息作为唇语视频的特征,它具有类内一致性和类间区分性的特点。然后利用LSTM对特征进行时序编码,它能学习具有区分性和泛化性的空间-时序特征。在公开的唇语数据集GRID、MIRACL-VC和Oulu VS上对本方法做了针对分割的单词或短语的说话者独立的唇语识别评估。在GRID和MIRACL-VC上,本方法的准确率比传统方法至少高30%;在Oulu VS上,本方法的准确率接近于最优结果。以上实验结果表明,本文提出的基于LSTM的唇语识别方法有效地解决了唇语视觉信息多样性的问题。 展开更多
关键词 唇语识别 long short-term memory 计算机视觉
在线阅读 下载PDF
基于双通道Residual-LSTM的SINS/GNSS组合导航算法 被引量:1
2
作者 奔粤阳 王奕霏 +2 位作者 李倩 魏廷枭 周一帆 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第4期325-333,共9页
针对全球导航卫星系统信号中断情况下SINS/GNSS组合导航系统无法持续进行误差校正的问题,提出一种基于双通道Residual-LSTM的SINS/GNSS组合导航算法。首先,考虑到SINS经度、纬度误差传播特性不同所导致的模型输入、输出信息之间的非线... 针对全球导航卫星系统信号中断情况下SINS/GNSS组合导航系统无法持续进行误差校正的问题,提出一种基于双通道Residual-LSTM的SINS/GNSS组合导航算法。首先,考虑到SINS经度、纬度误差传播特性不同所导致的模型输入、输出信息之间的非线性相关性差异化,构建具有不同权重系数的双通道长短期记忆神经网络模型结构,并引入遗忘信息共享机制自适应地利用历史导航数据对经度、纬度信息进行拟合预测。其次,针对深层神经网络存在的模型退化和梯度消失问题,在多层双通道LSTM网络之间建立残差高速通道形成Residual-LSTM模型结构,以增加不同网络层次之间的信息传播路径。最后,通过实船数据验证本文所提算法的有效性。实验结果表明,与基于常规智能方法的SINS/GNSS组合导航算法相比,所提组合导航算法在GNSS信号中断期间经度误差降低了51.97%,纬度误差降低了31.45%。 展开更多
关键词 SINS/GNSS组合导航 GNSS中断 双通道结构 残差长短期记忆神经网络 深度神经网络
在线阅读 下载PDF
计及铁心非线性的变压器空间动态磁场加速计算方法 被引量:1
3
作者 司马文霞 孙佳琪 +3 位作者 杨鸣 邹德旭 彭庆军 王劲松 《电工技术学报》 北大核心 2025年第5期1559-1574,共16页
快速获得变压器空间磁场动态分布是构建变压器数字孪生体的基础之一,然而现有快速计算方法难以快速、准确地获得铁心饱和工况下的磁场分布特性。因此,该文提出了计及铁心非线性的变压器空间动态磁场加速计算方法。首先,构建变压器电磁... 快速获得变压器空间磁场动态分布是构建变压器数字孪生体的基础之一,然而现有快速计算方法难以快速、准确地获得铁心饱和工况下的磁场分布特性。因此,该文提出了计及铁心非线性的变压器空间动态磁场加速计算方法。首先,构建变压器电磁场路耦合仿真模型,对关键变量进行参数化扫描,仿真获得不同非线性工况下的大量磁场数据,构建涉及铁心非线性工况的主磁通和漏磁通数据集;其次,提出融合卷积神经网络(CNN)和长短期记忆网络(LSTM)的双分支深度学习模型,训练提取磁场数据的空间和时间特征,解决主、漏磁通差异大造成的模型训练难题;最后,利用模型获得输入电压、电流与内部空间磁场分布的非线性映射关系,实现空间动态磁场的加速计算,为变压器数字孪生体的构建提供了快速获得磁场数据的方法。 展开更多
关键词 非线性 卷积神经网络 长短期记忆网络 磁场 加速计算
在线阅读 下载PDF
基于数据驱动和机理模型的机械钻速预测 被引量:1
4
作者 郑双进 江厚顺 +4 位作者 熊梦园 孟胡 詹炜 程荣升 王立辉 《钻采工艺》 北大核心 2025年第1期78-87,共10页
为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网... 为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网络结合长短期记忆网络(TCN-LSTM)作为数据驱动模型,并融合多元钻速预测机理模型,通过物理约束增强数据驱动模型的准确性与可解释性,实验表明融合模型比单一数据驱动模型或机理模型预测精度更高。随后,为进一步提升模型性能,采用了改进的蜣螂优化算法(IDBO)对TCN-LSTM模型进行优化,通过改进种群初始化和更新策略,实现了参数的高效搜索。消融实验及现场应用结果表明,对比BP、RF、LSTM、TCN模型,TCN-LSTM-IDBO模型可以实现机械钻速的精确预测,并且具有较好的泛化能力,可为钻井施工人员提供有力参考。 展开更多
关键词 机械钻速预测 时序卷积网络 长短期记忆网络 变分模态分解 蜣螂优化算法 数据分析
在线阅读 下载PDF
基于ARIMA-LSTM的矿区地表沉降预测方法 被引量:3
5
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
6
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
多因素土壤墒情预测模型DA-LSTM-soil构建 被引量:1
7
作者 车银超 郑光 +3 位作者 熊淑萍 张明天 马新明 席磊 《河南农业大学学报》 北大核心 2025年第4期698-710,共13页
【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网... 【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网络结构,分别引入特征和时间两个注意力模块。利用河南省许昌市2020—2021年冬小麦生长过程中物联网监测站的气象、土壤数据集,对DA-LSTM-soil模型进行训练和测试。同时,利用DA-LSTM-soil模型对河南省4个不同土壤类型的小麦种植区的数据集进行预测。【结果】对比试验表明,相较于LSTM、CNN-LSTM、CNN-LSTM-attention、LSTM-attention等深度学习模型,DA-LSTM-soil模型在S_(RME)、S_(ME)、A_(ME)、R^(2)评价指标更优,分别达到0.1764、0.0311、0.0466、0.9938。消融试验显示,时间注意力对模型性能的提升高于特征注意力。对时间步的试验显示,用过往3000 min的数据进行预测时,模型性能最佳;模型精度随着预测时长的增加有所下降,然而在5000 min内,决定系数R2仍保持在0.7以上。【结论】利用注意力机制,DA-LSTMsoil模型在Encoder前计算不同气象和土壤因素对墒情影响的权重,在Decoder前计算数据的时序对墒情预测的权重,双阶段注意力机制在特征提取和权重分配方面的作用显著,使模型具有更好的预测性能和泛化能力,可以为田块尺度麦田土壤墒情预测提供技术依据。 展开更多
关键词 麦田 土壤墒情预测 时序数据 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:2
8
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
面向涡轮的PCA-POA-LSTM数据驱动建模及故障预警方法 被引量:1
9
作者 刘斌 白红艳 +3 位作者 何璐瑶 张晓北 田野 杨理践 《电子测量与仪器学报》 北大核心 2025年第1期145-155,共11页
针对传统LSTM数据驱动模型存在输入参数规模过大导致运算负担过大、超参数选择不当和涡轮系统故障发生频率、运维成本高的问题,提出一种基于PCA-POA-LSTM的涡轮数据驱动建模方法,并结合滑动窗口法实现了涡轮故障预警。首先,应用PCA降维... 针对传统LSTM数据驱动模型存在输入参数规模过大导致运算负担过大、超参数选择不当和涡轮系统故障发生频率、运维成本高的问题,提出一种基于PCA-POA-LSTM的涡轮数据驱动建模方法,并结合滑动窗口法实现了涡轮故障预警。首先,应用PCA降维技术,减少输入数据维度;其次,采用POA参数寻优方法选出最优超参数组合;然后,利用LSTM算法预测涡轮的输出参数;最后,在PCA-POA-LSTM涡轮数据驱动模型预测结果的基础上,结合滑动窗口法对涡轮故障进行预警,通过窗口内标准差定义报警阈值,攻克了涡轮故障预警的难题。结果表明,以PCA-POA-LSTM为基础的涡轮数据驱动建模实现了较高的精确度,平均绝对百分比误差均在0.396以下,平均绝对误差均在0.809以下,平均方根误差均在1.387以下。并且故障预警方法,至少可提前173个监测点发出故障预警信号,实现了对涡轮故障预警的目的,为未来开展涡轮健康管理提供了理论依据和技术支持。 展开更多
关键词 涡轮 鹈鹕优化算法 长短期记忆网络 主成分分析 数据驱动
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
10
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
基于Vague软集的海上风电功率区间预测 被引量:1
11
作者 田书欣 朱峰 +2 位作者 杨喜军 符杨 苏向敬 《中国电机工程学报》 北大核心 2025年第4期1465-1476,I0019,共13页
海上风电输出功率的精准预测是保障海上风电并网系统调度运行的基础。针对海上风电海洋环境高度复杂、随机时空强烈耦合的特征,提出一种基于Vague软集的海上风电输出功率的新型区间预测方法。首先,引入Vague软集概念,提出融合Vague集真... 海上风电输出功率的精准预测是保障海上风电并网系统调度运行的基础。针对海上风电海洋环境高度复杂、随机时空强烈耦合的特征,提出一种基于Vague软集的海上风电输出功率的新型区间预测方法。首先,引入Vague软集概念,提出融合Vague集真隶属度和伪隶属度函数的交错式海上风电功率区间划分方法,实现风电功率数据Vague软区间化。其次,建立基于Vague-卷积神经网络(convolutional neural network,CNN)-长短期记忆神经网络(long short-term memory neural network,LSTM)的海上风电功率组合预测模型。通过类Vague软区间转换方法将双隶属度区间概率向量转化为海上风电功率复杂不确定信息下的区间预测结果。然后,从预测准确性、清晰性和兼顾性角度建立预测区间覆盖精度、预测区间宽度和预测综合水平等Vague软区间预测评估指标。最后,以我国东部某海上风电机组实际数据为算例进行验证。结果表明,所提预测模型预测结果可以兼顾预测区间的覆盖精度和清晰度,能够为海上风电不同工况下运行需求提供支撑。 展开更多
关键词 海上风电 Vague-卷积神经网络(CNN)-长短期记忆神经网络(LSTM)模型 Vague软集 软区间转换 区间预测
在线阅读 下载PDF
融合二次分解的深度学习模型在PM_(2.5)浓度预测中的应用 被引量:1
12
作者 江雨燕 黄体臣 +1 位作者 甘如美江 王付宇 《安全与环境学报》 北大核心 2025年第1期296-309,共14页
针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode De... 针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-Variational Mode Decomposition-Temporal Convolutional Network-Bi-directional Long Short-Term Memory,CEEMDAN-VMD-TCN-BiLSTM)。该模型先由递归特征消除(Recursive Feature Elimination,RFE)进行特征筛选,随后使用自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)将2013—2016年北京市PM_(2.5)质量浓度序列分解为一系列高低频模态分量并计算各分量样本熵,将样本熵由K-means聚类整合为新的分量,再由变分模态分解(Variational Mode Decomposition,VMD)方法进行二次分解。最后,将所有分量先经时间卷积网络(Temporal Convolutional Network,TCN)进行特征提取,并通过双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)预测,叠加各分量预测值即为最终预测结果。消融试验结果显示,该模型相比于单次CEEMDAN分解模型均方根误差E_(MAPE)降低19.312%,绝对误差E_(MAE)降低34.423%,百分比误差E_(MAPE)与希尔不等系数E_(TIC)分别减少40.465百分点和59.794%。由此可见,研究在引入VMD构成二次分解模型相比于单次分解模型的预测误差更小,精度更高,可为决策者在PM_(2.5)质量浓度预测与治理等工作提供一定参考。 展开更多
关键词 环境工程学 PM_(2.5)质量浓度预测 自适应噪声的完备经验模态分解 变分模态分解 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
空管不正常事件风险信息抽取与识别方法研究 被引量:1
13
作者 王洁宁 王帅翔 孙禾 《安全与环境学报》 北大核心 2025年第4期1444-1454,共11页
目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词... 目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词抽取的双向编码器表征法和双向长短时记忆网络的深度学习模型(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory,BERT-BiLSTM)。该模型通过对不正常事件文本进行信息抽取,过滤其中无用信息,并将双向编码器表征法(Bidirectional Encoder Representations from Transformers,BERT)模型输出的特征向量序列作为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的输入序列,以对空管不正常事件文本风险识别任务进行对比试验。试验结果显示,在风险识别试验中,基于空管专业信息词抽取的BERT-BiLSTM模型相比于通用领域的BERT模型,风险识别准确率提升了3百分点。可以看出该模型有效提升了空管安全信息处理能力,能够有效识别空管部门日常运行中出现的不正常事件所带来的风险,同时可以为空管安全领域信息挖掘相关任务提供基础参考。 展开更多
关键词 安全工程 双向编码器表征法 双向长短时记忆网络 空管不正常事件 风险识别
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测 被引量:1
14
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
基于机器学习的酸性气藏地下储气库硫化氢含量预测方法 被引量:1
15
作者 冯国庆 杜勤锟 +3 位作者 周道勇 蔡家兰 程希 莫海帅 《天然气工业》 北大核心 2025年第2期159-169,共11页
地下储气库(以下简称储气库)中含有硫化氢等有害气体,不仅影响储气库的安全运行,还直接对环境造成严重污染,准确预测储气库采出气组分中H2S的含量具有重要意义。目前,常采用油藏数值模拟的组分模型来预测H2S含量,但其计算过程复杂且耗... 地下储气库(以下简称储气库)中含有硫化氢等有害气体,不仅影响储气库的安全运行,还直接对环境造成严重污染,准确预测储气库采出气组分中H2S的含量具有重要意义。目前,常采用油藏数值模拟的组分模型来预测H2S含量,但其计算过程复杂且耗时较长,不能方便快捷地用于储气库单井H2S的含量预测。为此,以HCX储气库为研究对象,在建立储气库的机理模型并开展数值模拟的基础上,以机理模型计算的储气库多周期H2S预测结果为样本集,应用多输出支持向量回归(MSVR)、长短期记忆网络(LSTM)、人工神经网络(ANN)3种机器学习算法建立了硫化氢含量的智能代理模型,并对3种模型预测精度进行对比分析。研究结果表明:①长短期记忆网络模型具有适中的训练时间、较好的预测精度,可将该模型作为HCX储气库的H2S预测智能代理模型;②进一步对LSTM模型的训练数据和过渡拟合问题进行优化,确定最佳训练数集1500组,最佳丢弃率为0.2,隐含层设置范围可控制在层数1~2层,节点数30~60个;③经HCX储气库的实例应用表明,建立的LSTM智能代理模型能够准确预测储气库采出气中H2S的含量。结论认为,经过优化的LSTM算法智能代理模型具有较好的外推性,该研究成果可为含H2S储气库的建设和安全高效运行提供技术支持。 展开更多
关键词 含硫储气库 数值模拟 组分模拟 硫化氢含量预测 机器学习 长短期记忆网络模型 机器学习模型优化
在线阅读 下载PDF
多尺度特征提取的Transformer短期风电功率预测 被引量:2
16
作者 徐武 范鑫豪 +1 位作者 沈智方 刘洋 《太阳能学报》 北大核心 2025年第2期640-648,共9页
针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了... 针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了特征提取时维数不被破坏;其次,利用融合自注意力机制的长短期记忆网络挖掘气象条件与功率之间的全局依赖关系;最后,融合风电功率序列本身时序特征和气象条件依赖关系,实现短期风电功率预测。实例仿真结果表明,MTPNet模型预测精度得到提升;消融实验证明了模型各模块的可靠性和有效性,具有一定的实用价值。 展开更多
关键词 风电功率预测 TRANSFORMER 注意力机制 特征提取 长短期记忆网络 维数不变嵌入层
在线阅读 下载PDF
基于AI的噪声环境下远距离高清音频采集研究 被引量:1
17
作者 黄丽娜 《现代电子技术》 北大核心 2025年第4期130-134,共5页
为提升远距离采集音频信号的强度,深度滤除音频信号噪声以提取有用音频部分,提出一种基于AI的噪声环境下远距离高清音频采集方法。构建远距离高清音频采集结构,分别通过模拟增益和数字增益技术进行音频信号增益处理,以提升音频信号强度... 为提升远距离采集音频信号的强度,深度滤除音频信号噪声以提取有用音频部分,提出一种基于AI的噪声环境下远距离高清音频采集方法。构建远距离高清音频采集结构,分别通过模拟增益和数字增益技术进行音频信号增益处理,以提升音频信号强度。依据短时傅里叶变换提取音频增益信号频域特征,输入到长短期记忆网络中,实现音频信号深度噪声去除,得到高清音频频域信息;再通过短时傅里叶逆变换处理该信号,实现音频信号重构,最终达到噪声环境下远距离高清音频采集的目的。实验验证结果表明:依据音频信号增益能够有效提升采集音频信号的强度,并避免信号受距离、噪声影响而逐渐衰减,继而有效滤除音频信号噪声数据,提取其中有用的音频信号,确保音频信号高清度;且最终采集音频信号信噪比均高于18 dB,可懂度均高于97%,有效验证了所提方法的有效性和准确性。 展开更多
关键词 高清音频采集 AI 噪声环境 信号强度 远距离 长短期记忆网络 短时傅里叶变换
在线阅读 下载PDF
基于三重生成对抗的多维时间序列异常检测 被引量:1
18
作者 霍纬纲 吴艺凝 《计算机工程与设计》 北大核心 2025年第5期1304-1310,共7页
为有效解决多维时间序列(multivariate time series, MTS)无监督异常检测模型中自编码器模块容易拟合异常样本、正常MTS样本对应的隐空间特征可能被重构为异常MTS的问题,设计一种具有三重生成对抗的MTS异常检测模型。以LSTM自编码器为... 为有效解决多维时间序列(multivariate time series, MTS)无监督异常检测模型中自编码器模块容易拟合异常样本、正常MTS样本对应的隐空间特征可能被重构为异常MTS的问题,设计一种具有三重生成对抗的MTS异常检测模型。以LSTM自编码器为生成器,基于重构误差生成伪标签,由判别器区分经伪标签过滤后的重构MTS和原始MTS;采用两次对抗训练将LSTM自编码器的隐空间约束为均匀分布,减少LSTM自编码器隐空间特征重构出异常MTS的可能性。多个公开MTS数据集上的实验结果表明,T-GAN能在带有污染数据的训练集上更好学习正常MTS分布,取得较高的异常检测效果。 展开更多
关键词 异常检测 生成对抗 多维时间序列 自编码器 长短期记忆网络 伪标签 污染数据
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
19
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
基于特征工程与仿生优化算法构建河流溶解氧预测模型 被引量:1
20
作者 李鹏程 苏永军 +1 位作者 王钰 贾悦 《中国农村水利水电》 北大核心 2025年第2期37-44,共8页
河流水体中溶解氧骤增或耗竭均会引发系列环境污染、物种多样性破坏等问题,准确预测河流溶解氧(DO)浓度对河流水环境治理具有重要意义。为提高模型输入特征的可解释性及模型精度,获取河流DO浓度最优预测模型,研究利用黄河流域山西境内... 河流水体中溶解氧骤增或耗竭均会引发系列环境污染、物种多样性破坏等问题,准确预测河流溶解氧(DO)浓度对河流水环境治理具有重要意义。为提高模型输入特征的可解释性及模型精度,获取河流DO浓度最优预测模型,研究利用黄河流域山西境内水质监测站点数据,以双向长短期记忆网络(BiLSTM)为基础,结合卷积神经网络模型(CNN)和注意力机制(Attention Mechanism),基于随机森林模型(RF)进行特征优选,建立RF-CNN-BiLSTM-Attention(RF-CBA)模型,进一步利用吸血水蛭优化算法(BSLO)、黑翅鸢优化算法(BKA)、白鲨优化算法(WSO)等仿生优化算法,构建了BSLO-RF-CBA、BKA-RF-CBA、WSO-RF-CBA共3种优化模型,并与深度学习中CNN-A、LSTM-A、BiLSTM-A、CBA、RF-CBA模型对比,分析得到河流溶解氧预测结果,以平均绝对误差(MAE)、均方根误差(RMSE)、均方误差(MSE)、决定系数(R2)、全绩效指标(GPI)和相对误差(MAPE)评价不同模型精度,结果表明:(1)RF模型通过对影响河流DO特征值进行排序、筛选,可消除冗余特征对水质预测模型的影响,提高预测精度。(2)利用仿生算法优化RF-CBA模型的神经元数量、学习率、正则化系数等参数,模型模拟精度进一步提升,总体上捕捉到了DO波动的时间序列特征,模型表现出强稳定性和泛化能力。(3)BSLO-RF-CBA模型模拟精度最高,对DO变化捕捉能力突出,具有更强的捕获全局依赖关系的能力,推荐用于河流溶解氧预测模型。该模型具备扩展至不同河流溶解氧等污染物浓度预测的能力,为河流水体污染预警与系统化管理提供技术支撑。 展开更多
关键词 溶解氧 双向长短期记忆网络机 特征优选 仿生优化算法 耦合模型
在线阅读 下载PDF
上一页 1 2 167 下一页 到第
使用帮助 返回顶部