A series of dynamic model tests that were performed on a geogrid-reinforced square footing are presented.The dynamic(sinusoidal)loading was applied using a mechanical testing and simulation(MTS)electro-hydraulic servo...A series of dynamic model tests that were performed on a geogrid-reinforced square footing are presented.The dynamic(sinusoidal)loading was applied using a mechanical testing and simulation(MTS)electro-hydraulic servo loading system.In all the tests,the amplitude of loading was±160 kPa;the frequency of loading was 2 Hz.To better ascertain the effect of reinforcement,an unreinforced square footing was first tested.This was followed by a series of tests,each with a single layer of reinforcement.The reinforcement was placed at depths of 0.3B,0.6B and 0.9B,where B is the width of footing.The optimal depth of reinforcement was found to be 0.6B.The effect of adopting this value versus the other two depths was quantified.The single layer of geogrid had an effective reinforcement depth of 1.7B below the footing base.The increase of the depth between the topmost geogrid layer and the bottom of the footing(within the range of 0.9B)did not change the failure mode of the foundation.展开更多
Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact ...Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact force of a metal beam based on maximal normal yield surface are derived by membrane factor method(MFM),then the results are compared with repeated impact tests.It can be found that the solutions based on MFM are between the upper and lower bounds,and very close to the results of the repeated impact tests,indicating the theoretical model proposed can predict the plastic responses of the metal beam accurately.What’s more,the influences of impact location and boundary condition on the dynamic responses of the beam subjected to repeated impacts are determined.Results show that,as the distance of impact location from the middle span of the beam increases,the permanent deflection decreases,while the impact force increases.Meanwhile,the influences of impact location enhance as the impact number increases.When the permanent deflection is smaller than the thickness,the effect of boundary condition on the plastic responses is significant.However,when the deflection is larger than the thickness,the beam will be like a string and only axial force works,resulting in little influence of boundary condition on the plastic responses of the beam.展开更多
The emission of anomalous X-ray pulsars(AXPs)and soft gamma-ray repeaters(SGRs)is believed to be powered by the dissipation of their strong magnetic fields,which coined the name“magnetar”.By combining timing and ene...The emission of anomalous X-ray pulsars(AXPs)and soft gamma-ray repeaters(SGRs)is believed to be powered by the dissipation of their strong magnetic fields,which coined the name“magnetar”.By combining timing and energy observational results,the magnetar model can be easily appreciated.From a timing perspective,the magnetic field strengths of AXPs and SGRs,which are calculated under the assumption of dipole radiation,are extremely strong.From an energy perspective,the X-ray/soft gamma-ray luminosities of AXPs and SGRs are larger than their rotational energy loss rates(i.e.,L_(x>E_(rot)).It is thus reasonable to assume that the high-energy radiation comes from magnetic energy decay,and the magnetar model has been extensively discussed(or accepted).However,we argue that:(ⅰ)Calculating magnetic fields by assuming that rotational energy loss is dominated by dipole radiation(i.e.,E_(rot)■E_(μ))may be controversial,and we suggest that the energies carried by outflowing particles should also be considered.(ⅱ)The fact that X-ray luminosity is greater than the rotational energy loss rate does not necessarily mean that the emission energy comes from the magnetic field decaying,which requires further observational testing.Furthermore,some observational facts conflict with the“magnetar”model,such as observations of anti-magnetars,high magnetic field pulsars,and radio and X-ray observations of AXPs/SGRs.Therefore,we propose a crusted strange star model as an alternative,which can explain many more observational facts of AXPs/SGRs.展开更多
Objective Junctophilin-2(JPH2)is an essential structural protein that maintains junctional membrane complexes(JMCs)in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum,thereby facilitating ...Objective Junctophilin-2(JPH2)is an essential structural protein that maintains junctional membrane complexes(JMCs)in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum,thereby facilitating excitationcontraction(E-C)coupling.Mutations in JPH2 have been associated with hypertrophic cardiomyopathy(HCM),but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus(MORN)repeat motifs remain incompletely understood.This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis.Methods A recombinant N-terminal fragment of mouse JPH2(residues 1-440),encompassing the MORN repeats and an adjacent helical region,was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain.Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features.Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells.In addition,site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations,including R347C,was used to evaluate their effects on membrane interaction and subcellular localization.Results The crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6Å,revealing a compact,elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration,forming a continuous hydrophobic core stabilized by alternating aromatic residues.A C-terminalα-helix further reinforced structural integrity.Conservation analysis identified the inner groove of the MORN array as a highly conserved surface,suggesting its role as a protein-binding interface.A flexible linker segment enriched in positively charged residues,located adjacent to the MORN motifs,was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes.Functional assays demonstrated that mutation of these basic residues impaired membrane association,while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays,despite preserving the overall MORN-Helix fold in structural modeling.Conclusion This study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2,highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions.The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis.These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.展开更多
Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,whi...Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.展开更多
基金Projects(41962017,51469005)supported by the National Natural Science Foundation of ChinaProject(2017GXNSFAA198170)supported by the Natural Science Foundation in Guangxi Province,China+1 种基金Project supported by the Guangxi University of Science and Technology Innovation Team Support Plan,ChinaProject supported by the High Level Innovation Team and Outstanding Scholars Program of Guangxi Institutions of Higher Learning,China。
文摘A series of dynamic model tests that were performed on a geogrid-reinforced square footing are presented.The dynamic(sinusoidal)loading was applied using a mechanical testing and simulation(MTS)electro-hydraulic servo loading system.In all the tests,the amplitude of loading was±160 kPa;the frequency of loading was 2 Hz.To better ascertain the effect of reinforcement,an unreinforced square footing was first tested.This was followed by a series of tests,each with a single layer of reinforcement.The reinforcement was placed at depths of 0.3B,0.6B and 0.9B,where B is the width of footing.The optimal depth of reinforcement was found to be 0.6B.The effect of adopting this value versus the other two depths was quantified.The single layer of geogrid had an effective reinforcement depth of 1.7B below the footing base.The increase of the depth between the topmost geogrid layer and the bottom of the footing(within the range of 0.9B)did not change the failure mode of the foundation.
文摘Marine structures are frequently subjected to repeated impact loadings,resulting in failure of the structures,even causing serious accidents.The analytical expressions of dimensionless permanent deflection and impact force of a metal beam based on maximal normal yield surface are derived by membrane factor method(MFM),then the results are compared with repeated impact tests.It can be found that the solutions based on MFM are between the upper and lower bounds,and very close to the results of the repeated impact tests,indicating the theoretical model proposed can predict the plastic responses of the metal beam accurately.What’s more,the influences of impact location and boundary condition on the dynamic responses of the beam subjected to repeated impacts are determined.Results show that,as the distance of impact location from the middle span of the beam increases,the permanent deflection decreases,while the impact force increases.Meanwhile,the influences of impact location enhance as the impact number increases.When the permanent deflection is smaller than the thickness,the effect of boundary condition on the plastic responses is significant.However,when the deflection is larger than the thickness,the beam will be like a string and only axial force works,resulting in little influence of boundary condition on the plastic responses of the beam.
基金supported by the National Natural Science Foundation of China(12273008,12025303,12403046)the National SKA Program of China(2022SKA0130104)+3 种基金the Natural Science and Technology Foundation of Guizhou Province(QiankehejichuMS[2025]266,[2023]024,ZK[2022]304)the Foundation of Guizhou Provincial Education Department(KY(2020)003)the Academic New Seedling Fund Project of Guizhou Normal University([2022]B18)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(2022A03013-4).
文摘The emission of anomalous X-ray pulsars(AXPs)and soft gamma-ray repeaters(SGRs)is believed to be powered by the dissipation of their strong magnetic fields,which coined the name“magnetar”.By combining timing and energy observational results,the magnetar model can be easily appreciated.From a timing perspective,the magnetic field strengths of AXPs and SGRs,which are calculated under the assumption of dipole radiation,are extremely strong.From an energy perspective,the X-ray/soft gamma-ray luminosities of AXPs and SGRs are larger than their rotational energy loss rates(i.e.,L_(x>E_(rot)).It is thus reasonable to assume that the high-energy radiation comes from magnetic energy decay,and the magnetar model has been extensively discussed(or accepted).However,we argue that:(ⅰ)Calculating magnetic fields by assuming that rotational energy loss is dominated by dipole radiation(i.e.,E_(rot)■E_(μ))may be controversial,and we suggest that the energies carried by outflowing particles should also be considered.(ⅱ)The fact that X-ray luminosity is greater than the rotational energy loss rate does not necessarily mean that the emission energy comes from the magnetic field decaying,which requires further observational testing.Furthermore,some observational facts conflict with the“magnetar”model,such as observations of anti-magnetars,high magnetic field pulsars,and radio and X-ray observations of AXPs/SGRs.Therefore,we propose a crusted strange star model as an alternative,which can explain many more observational facts of AXPs/SGRs.
文摘Objective Junctophilin-2(JPH2)is an essential structural protein that maintains junctional membrane complexes(JMCs)in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum,thereby facilitating excitationcontraction(E-C)coupling.Mutations in JPH2 have been associated with hypertrophic cardiomyopathy(HCM),but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus(MORN)repeat motifs remain incompletely understood.This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis.Methods A recombinant N-terminal fragment of mouse JPH2(residues 1-440),encompassing the MORN repeats and an adjacent helical region,was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain.Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features.Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells.In addition,site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations,including R347C,was used to evaluate their effects on membrane interaction and subcellular localization.Results The crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6Å,revealing a compact,elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration,forming a continuous hydrophobic core stabilized by alternating aromatic residues.A C-terminalα-helix further reinforced structural integrity.Conservation analysis identified the inner groove of the MORN array as a highly conserved surface,suggesting its role as a protein-binding interface.A flexible linker segment enriched in positively charged residues,located adjacent to the MORN motifs,was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes.Functional assays demonstrated that mutation of these basic residues impaired membrane association,while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays,despite preserving the overall MORN-Helix fold in structural modeling.Conclusion This study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2,highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions.The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis.These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.
基金supported by the National Natural Science Foundation of China(62001481,61890542,62071475)the Natural Science Foundation of Hunan Province(2022JJ40561)the Research Program of National University of Defense Technology(ZK22-46).
文摘Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.