Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplemen...Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning.展开更多
在定义计划评审技术(program evaluation and review technique,PERT)网络局部关键活动、关键活动、关键路线和活动关键度的基础上,提出了关键活动、关键路线的分析方法;根据活动不确定性对项目计划工期影响的大小,即活动敏感性指标的大...在定义计划评审技术(program evaluation and review technique,PERT)网络局部关键活动、关键活动、关键路线和活动关键度的基础上,提出了关键活动、关键路线的分析方法;根据活动不确定性对项目计划工期影响的大小,即活动敏感性指标的大小,确定活动在项目进度控制中的重要程度;在定义活动相对敏感性、活动敏感性的基础上,利用全概率公式,得到活动敏感性指标计算公式,进而提出了最关键活动分析方法。算例表明,利用本研究提出的方法可便捷地找出PERT网络的关键路线和最关键活动。展开更多
基金Project(51318010402)supported by General Armament Department Pre-Research Program of China
文摘Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning.
文摘在定义计划评审技术(program evaluation and review technique,PERT)网络局部关键活动、关键活动、关键路线和活动关键度的基础上,提出了关键活动、关键路线的分析方法;根据活动不确定性对项目计划工期影响的大小,即活动敏感性指标的大小,确定活动在项目进度控制中的重要程度;在定义活动相对敏感性、活动敏感性的基础上,利用全概率公式,得到活动敏感性指标计算公式,进而提出了最关键活动分析方法。算例表明,利用本研究提出的方法可便捷地找出PERT网络的关键路线和最关键活动。