针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算...针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。展开更多
RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范...RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范围策略、改进采样方式、引入自适应步长,对快速RRT*算法进行改进,使得算法耗时和路径长度更短。同时,加入节点连接筛选策略,消除路径中过大的转弯角。实验结果表明,改进后的算法在三维环境下能快速找到一条距离最短的无碰撞路径,且运行时间也大幅降低。展开更多
针对多自由度机械臂在三维空间中轨迹规划的高复杂性、安全性和可靠性等问题,基于快速扩展随机树(rapidly-exploring random trees,RRT)算法在高维空间中的概率完备性和计算轻量性等优势,提出了一种基于均匀概率的目标启发式RRT(target ...针对多自由度机械臂在三维空间中轨迹规划的高复杂性、安全性和可靠性等问题,基于快速扩展随机树(rapidly-exploring random trees,RRT)算法在高维空间中的概率完备性和计算轻量性等优势,提出了一种基于均匀概率的目标启发式RRT(target heuristic RRT based on uniform probability,PH-RRT)方法.首先,该方法基于均匀概率的分配机制选取概率采样阈值作为节点标准,并与随机采样值进行比较.当随机采样值在设定的阈值范围内时,确定目标点为随机点进行节点扩展.当随机采样值在设定的阈值范围外时,随机生成随机点,在目标重力和随机点重力的目标启发式作用下进行节点扩展.然后,在已规划出的路径的基础上,进一步引入广度优先搜索思想,针对规划出的路径进行优化处理,提高了路径平滑度并减少了路径长度.实验结果表明,该方法能较好地解决传统RRT方法固有的盲目搜索问题,减少路径规划时间和路径长度,提高机械臂的路径规划效率.展开更多
文摘针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。
文摘RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范围策略、改进采样方式、引入自适应步长,对快速RRT*算法进行改进,使得算法耗时和路径长度更短。同时,加入节点连接筛选策略,消除路径中过大的转弯角。实验结果表明,改进后的算法在三维环境下能快速找到一条距离最短的无碰撞路径,且运行时间也大幅降低。
文摘针对多自由度机械臂在三维空间中轨迹规划的高复杂性、安全性和可靠性等问题,基于快速扩展随机树(rapidly-exploring random trees,RRT)算法在高维空间中的概率完备性和计算轻量性等优势,提出了一种基于均匀概率的目标启发式RRT(target heuristic RRT based on uniform probability,PH-RRT)方法.首先,该方法基于均匀概率的分配机制选取概率采样阈值作为节点标准,并与随机采样值进行比较.当随机采样值在设定的阈值范围内时,确定目标点为随机点进行节点扩展.当随机采样值在设定的阈值范围外时,随机生成随机点,在目标重力和随机点重力的目标启发式作用下进行节点扩展.然后,在已规划出的路径的基础上,进一步引入广度优先搜索思想,针对规划出的路径进行优化处理,提高了路径平滑度并减少了路径长度.实验结果表明,该方法能较好地解决传统RRT方法固有的盲目搜索问题,减少路径规划时间和路径长度,提高机械臂的路径规划效率.