Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic ...Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.展开更多
In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magne...In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magnet.The effects of electromagnetic frequency on the morphology,microstructure,nano-hardness and elastic modulus of the coatings were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD)and nano-indenter.This paper has mainly studied the influence of CrAlN coatings which are prepared at various electromagnetic frequencies on the wear and erosion resistance through a series of wear and solid particle erosion experiments.It was found that the deposition rate of CrAlN coatings increases with the increase of electromagnetic frequency.And CrAlN coatings all preferentially grew along the(111)crystal plane.At 16.7 Hz,with the increase of pulsed electromagnetic frequency,the hardness is the highest(23.6 GPa)and the adhesion is the highest(41.5 N).In addition,the coating deposition exhibited the best wear and solid erosion resistance at 16.7 Hz and 33.3 Hz,the friction coefficient is about 0.35,and the erosion rate is about 0.2μm/g at 30°and less than 1μm/g at 90°,respectively.These results indicate that the CrAlN coating formed at an appropriate pulsed electromagnetic frequency can achieve excellent mechanical properties,wear and solid erosion resistance.展开更多
文摘Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.
基金Projects(2017GDAS CX-0202,2017GDAS CX-0111,2018 GDAS CX-0402) supported by Guangdong Academy of Science’ Special Project of Science and Technology Development,ChinaProject(2014B070705007) supported by Guangdong Science and Technology Plan Project,China+1 种基金Project(2016A030312015) supported by Scientific Research Fund of Guangdong Province,ChinaProject(2017A070701027) supported by Guangdong Science and Technology Program,China。
文摘In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magnet.The effects of electromagnetic frequency on the morphology,microstructure,nano-hardness and elastic modulus of the coatings were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD)and nano-indenter.This paper has mainly studied the influence of CrAlN coatings which are prepared at various electromagnetic frequencies on the wear and erosion resistance through a series of wear and solid particle erosion experiments.It was found that the deposition rate of CrAlN coatings increases with the increase of electromagnetic frequency.And CrAlN coatings all preferentially grew along the(111)crystal plane.At 16.7 Hz,with the increase of pulsed electromagnetic frequency,the hardness is the highest(23.6 GPa)and the adhesion is the highest(41.5 N).In addition,the coating deposition exhibited the best wear and solid erosion resistance at 16.7 Hz and 33.3 Hz,the friction coefficient is about 0.35,and the erosion rate is about 0.2μm/g at 30°and less than 1μm/g at 90°,respectively.These results indicate that the CrAlN coating formed at an appropriate pulsed electromagnetic frequency can achieve excellent mechanical properties,wear and solid erosion resistance.