Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleif...Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleifera saponin(COS)was purified using AB-8 macroporous adsorption resin,and its composition and structure were analyzed.The effects of different mole fractions of COS(αCOS)on surface tension(γ),oil-water interfacial tension(IFT),emulsification,and foam properties of COS-SCG binary mixed systems were investigated in mixtures of SCG with purified COS.The stability ofγand foamability under diverse environmental conditions were also discussed.The results indicated that the COS-SCG system exhibited remarkable surface-active synergism.The minimum critical micelle concentration(cmc)of the mixed system was lower than that of SCG,and adding a small mole fraction of COS(1%-2%)induced a synergistic reduction ofγ.Specifically,the cmc andγwere 2.50×10-4 mol/L and 23.1 mN/m forαCOS=1%,respectively.The system exhibited exceptional IFT reduction capacity,achieving a minimum value of 1.42 mN/m atαCOS=10%.The mixed system reached a foaming volume(atαCOS=50%)and foam stability(atαCOS=75%)were 51.0 mL and 97.37%,respectively.Microscopic analysis further confirmed these outstanding foam properties.Moreover,the COS-SCG system displayed reducedγwith enhanced foaming volume under elevated temperatures(35-75℃)and salinity(0-20 g/L).However,acidic conditions and hard water compromised bothγstability and foamability.展开更多
International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between a...International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport.In this paper,a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers.A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model.The results show that the optimal allocation scheme aligns with the principle of fairness,indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.展开更多
As a general rule of Economics of Development,economic growth and development require rational institution guarantee.Land Tenure.As a main institution factor in agricultural development,closely relates to the reform o...As a general rule of Economics of Development,economic growth and development require rational institution guarantee.Land Tenure.As a main institution factor in agricultural development,closely relates to the reform of Chinese agriculture.Based on the relevant theories of Economics of Institution and Economics of Development,and combined with the marketization process of Chinese Land Tenure of Property Rights,the article studied the effects of institutional factors and put forward some choices in the development of agriculture,which is of both significant and practical importance.展开更多
While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using po...While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96).展开更多
文摘Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleifera saponin(COS)was purified using AB-8 macroporous adsorption resin,and its composition and structure were analyzed.The effects of different mole fractions of COS(αCOS)on surface tension(γ),oil-water interfacial tension(IFT),emulsification,and foam properties of COS-SCG binary mixed systems were investigated in mixtures of SCG with purified COS.The stability ofγand foamability under diverse environmental conditions were also discussed.The results indicated that the COS-SCG system exhibited remarkable surface-active synergism.The minimum critical micelle concentration(cmc)of the mixed system was lower than that of SCG,and adding a small mole fraction of COS(1%-2%)induced a synergistic reduction ofγ.Specifically,the cmc andγwere 2.50×10-4 mol/L and 23.1 mN/m forαCOS=1%,respectively.The system exhibited exceptional IFT reduction capacity,achieving a minimum value of 1.42 mN/m atαCOS=10%.The mixed system reached a foaming volume(atαCOS=50%)and foam stability(atαCOS=75%)were 51.0 mL and 97.37%,respectively.Microscopic analysis further confirmed these outstanding foam properties.Moreover,the COS-SCG system displayed reducedγwith enhanced foaming volume under elevated temperatures(35-75℃)and salinity(0-20 g/L).However,acidic conditions and hard water compromised bothγstability and foamability.
基金supported by the National Natural Science Foundation of Chinathe Civil Aviation Administration of China (U2333206).
文摘International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport.In this paper,a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers.A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model.The results show that the optimal allocation scheme aligns with the principle of fairness,indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.
文摘As a general rule of Economics of Development,economic growth and development require rational institution guarantee.Land Tenure.As a main institution factor in agricultural development,closely relates to the reform of Chinese agriculture.Based on the relevant theories of Economics of Institution and Economics of Development,and combined with the marketization process of Chinese Land Tenure of Property Rights,the article studied the effects of institutional factors and put forward some choices in the development of agriculture,which is of both significant and practical importance.
文摘While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96).