The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in futu...The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.展开更多
The gate assignment at an airport is one of the major activities in airport operations.With the increase of passenger traffic volumes and the number of flights, the complexity of this task and the factors to be consid...The gate assignment at an airport is one of the major activities in airport operations.With the increase of passenger traffic volumes and the number of flights, the complexity of this task and the factors to be considered have increased significantly, and an efficient gate utilizationhas received considerable attention. For overcoming the shortcomings of previous gate assignmentapproaches, this paper presents a partial parallel gate assignment approach, by which more factorsconcerning aircraft and gates can be collsidered at the same time. This paper also presents themethod of using a knowledge-based system combined with a mathematical programming method forgetting an optimized feasible assignment solution. By this way, it is more easily to get the solutionthat satisfies both the static and dynamic situations,and thus it may adapt well to meet the needsof actual use to rea-time operations. An experimental prototype has been implemented, and a casestudy is presented at the end of the paper.展开更多
Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to co...Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems.展开更多
To solve the problem of advanced digital manufacturing technology in the practical application, a knowledge engineering technology was introduced into the computer numerical control(CNC) programming. The knowledge acq...To solve the problem of advanced digital manufacturing technology in the practical application, a knowledge engineering technology was introduced into the computer numerical control(CNC) programming. The knowledge acquisition, knowledge representation and reasoning used in CNC programming were researched. The CNC programming system functional architecture of impeller parts based on knowledge based engineering(KBE) was constructed. The structural model of the general knowledge-based system(KBS) was also constructed. The KBS of CNC programming system was established through synthesizing database technology and knowledge base theory. And in the context of corporate needs, based on the knowledge-driven manufacturing platform(i.e. UG CAD/CAM), VC++6.0 and UG/Open, the KBS and UG CAD/CAM were integrated seamlessly and the intelligent CNC programming KBE system for the impeller parts was developed by integrating KBE and UG CAD/CAM system. A method to establish standard process templates was proposed, so as to develop the intelligent CNC programming system in which CNC machining process and process parameters were standardized by using this KBE system. For the impeller parts processing, the method applied in the development of the prototype system is proven to be viable, feasible and practical.展开更多
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ...Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.展开更多
Agent-oriented programming (AOP) is a framework to develop agents, and it aims to link the gap betweentheory and practical in agent research. The core of an AOP framework is its language and semantics. In this paper,w...Agent-oriented programming (AOP) is a framework to develop agents, and it aims to link the gap betweentheory and practical in agent research. The core of an AOP framework is its language and semantics. In this paper,we propose the necessary properties which agents should have, and then give a summary and analysis about differentAOP languages based on these properties.展开更多
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level progra...Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.展开更多
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain e...This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.展开更多
This paper presents a dependent-chance goal programming (DCGP) and gives a successive factoring method to solve DCGP. We also discuss the application of DCGP in Qinhuangdao region for water supply and allocation.
Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicabi...Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.展开更多
For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the ...For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the super-data envelopment analysis(DEA) model and the gray system theory, a new super-DEA for measuring the weight is proposed, and a gray relation projection model is established to rank the equipment programs. Finally, this approach is used to evaluate the equipment program. The results are verified valid and can provide a new way for evaluating the equipment program.展开更多
In 1957, the launch of the first artificial satellite ushered in a new era for modern space science. The past 50 years' developments in China's space science have witnessed many major missions, and substantial...In 1957, the launch of the first artificial satellite ushered in a new era for modern space science. The past 50 years' developments in China's space science have witnessed many major missions, and substantial progress has been achieved in space science study, exploration technology as well as experiment technology. Strategic Priority Program on Space Science was officially started in 2011. Through both self-developed space science missions and those with international cooperation,it is expected that the innovative breakthroughs will be realized, leapfrog development of related high-tech will be achieved to establish the important strategic status of space science in national development. To sum up, the implementation of the Strategic Priority Program on Space Science will definitely promote the rapid development of China's space science endeavor, making contributions to China's development and the progress of human civilization.展开更多
Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's f...Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.展开更多
基金Project(2022YFC2904502)supported by the National Key Research and Development Program of ChinaProject(62273357)supported by the National Natural Science Foundation of China。
文摘The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.
文摘The gate assignment at an airport is one of the major activities in airport operations.With the increase of passenger traffic volumes and the number of flights, the complexity of this task and the factors to be considered have increased significantly, and an efficient gate utilizationhas received considerable attention. For overcoming the shortcomings of previous gate assignmentapproaches, this paper presents a partial parallel gate assignment approach, by which more factorsconcerning aircraft and gates can be collsidered at the same time. This paper also presents themethod of using a knowledge-based system combined with a mathematical programming method forgetting an optimized feasible assignment solution. By this way, it is more easily to get the solutionthat satisfies both the static and dynamic situations,and thus it may adapt well to meet the needsof actual use to rea-time operations. An experimental prototype has been implemented, and a casestudy is presented at the end of the paper.
基金Project(61170049) supported by the National Natural Science Foundation of ChinaProject(2012AA010903) supported by the National High Technology Research and Development Program of China
文摘Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems.
基金Project(12ZT14)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘To solve the problem of advanced digital manufacturing technology in the practical application, a knowledge engineering technology was introduced into the computer numerical control(CNC) programming. The knowledge acquisition, knowledge representation and reasoning used in CNC programming were researched. The CNC programming system functional architecture of impeller parts based on knowledge based engineering(KBE) was constructed. The structural model of the general knowledge-based system(KBS) was also constructed. The KBS of CNC programming system was established through synthesizing database technology and knowledge base theory. And in the context of corporate needs, based on the knowledge-driven manufacturing platform(i.e. UG CAD/CAM), VC++6.0 and UG/Open, the KBS and UG CAD/CAM were integrated seamlessly and the intelligent CNC programming KBE system for the impeller parts was developed by integrating KBE and UG CAD/CAM system. A method to establish standard process templates was proposed, so as to develop the intelligent CNC programming system in which CNC machining process and process parameters were standardized by using this KBE system. For the impeller parts processing, the method applied in the development of the prototype system is proven to be viable, feasible and practical.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Nat- ural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), and the Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
基金supported by the National Natural Science Foundation of China(724701189072431011).
文摘Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.
文摘Agent-oriented programming (AOP) is a framework to develop agents, and it aims to link the gap betweentheory and practical in agent research. The core of an AOP framework is its language and semantics. In this paper,we propose the necessary properties which agents should have, and then give a summary and analysis about differentAOP languages based on these properties.
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
基金Project(2006CB705507) supported by the National Basic Research and Development Program of ChinaProject(20060533036) supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
基金supported by the National Natural Science Foundation of China(6157328561305133)
文摘This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.
基金This research was supported by Qinhuangdao Municipality
文摘This paper presents a dependent-chance goal programming (DCGP) and gives a successive factoring method to solve DCGP. We also discuss the application of DCGP in Qinhuangdao region for water supply and allocation.
基金supported by the National Natural Science Foundation of China(91648204 61601486)+1 种基金State Key Laboratory of High Performance Computing Project Fund(1502-02)Research Programs of National University of Defense Technology(ZDYYJCYJ140601)
文摘Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.
基金supported by the National Natural Science Foundation of China(7107307971222106+2 种基金70901069)the Research Foundation of the National Excellent Doctoral Dissertation of Chinathe Research Fund for the Doctoral Program of Higher Education(20133402110028)
文摘For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the super-data envelopment analysis(DEA) model and the gray system theory, a new super-DEA for measuring the weight is proposed, and a gray relation projection model is established to rank the equipment programs. Finally, this approach is used to evaluate the equipment program. The results are verified valid and can provide a new way for evaluating the equipment program.
文摘In 1957, the launch of the first artificial satellite ushered in a new era for modern space science. The past 50 years' developments in China's space science have witnessed many major missions, and substantial progress has been achieved in space science study, exploration technology as well as experiment technology. Strategic Priority Program on Space Science was officially started in 2011. Through both self-developed space science missions and those with international cooperation,it is expected that the innovative breakthroughs will be realized, leapfrog development of related high-tech will be achieved to establish the important strategic status of space science in national development. To sum up, the implementation of the Strategic Priority Program on Space Science will definitely promote the rapid development of China's space science endeavor, making contributions to China's development and the progress of human civilization.
基金supported by the National Natural Science Fundation of China (60374063)
文摘Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.