[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study...[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development.展开更多
The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce t...The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.展开更多
Based on microstructure analysis,diffusion theory,and hot deformation experiments,the solidification microstructure and element segregation of the Alloy 625 Plus ingot,the diffusion kinetics of Ti,Nb,and Mo during hom...Based on microstructure analysis,diffusion theory,and hot deformation experiments,the solidification microstructure and element segregation of the Alloy 625 Plus ingot,the diffusion kinetics of Ti,Nb,and Mo during homogenization and the hot deformation behavior of the homogenized ingot were investigated in this study.The results indicate that:(1)the solidified ingot exhibits a typical dendritic microstructure,and significant element segregation occurs,leading to the presence of Ti,Nb,and Mo-rich precipitates in the interdendritic region;(2)Following homogenization,the degree of element segregation in the ingot is significantly reduced.The diffusion coefficients(D)of Ti,Nb,and Mo under various homogenization conditions were calculated.Subsequently,the diffusion constants(D_(0))and activation energies(Q)of Ti,Nb,and Mo were obtained to be 0.01432,0.00397 and 0.00195 cm^(2)/s and 244.851,230.312,and 222.125 kJ/mol,respectively.Finally,the diffusion kinetics formulas for Ti,Nb,and Mo in Alloy 625 Plus were established.After homogenization at 1220℃for 8 h,the alloy exhibits low deformation resistance,a high degree of recrystallization,and optimal deformation coordination ability.Therefore,this represents a rational single-stage homogenization process.展开更多
The microstructure,fracture mechanisms,deformation modes,and their correlation with the mechanical properties of Mg-Zn-Gd alloys were analyzed,considering the influence of Y and Nd additions.Increasing Y content and d...The microstructure,fracture mechanisms,deformation modes,and their correlation with the mechanical properties of Mg-Zn-Gd alloys were analyzed,considering the influence of Y and Nd additions.Increasing Y content and decreasing Nd content resulted in an increase in grain size from 17.2 to 29.2μm,and two types of LPSO phases,14 H and 18 R,formed in the alloy.The mechanical properties of the alloys were predominantly influenced by the LPSO phase,with the grain size effect being relatively minor.Based on this analysis,higher Y and lower Nd contents enhanced the tensile strength,yield strength,and elongation of the alloys,with additional improvements observed following solid solution treatment.Changes in Y and Nd content caused a shift in fracture patterns,transitioning from ductile fracture to brittle fracture and then to mixed fracture.Following solid solution treatment,the alloy progressively transitions from intergranular to a combination of ductile and deconvolutional fracture.The deformation modes observed at each stage are as follows:an increase in LPSO phases and twins activates pyramidal slip and suppresses prismatic slip.展开更多
The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensiti...The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.展开更多
Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space developmen...Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space development. Whilst the load-bearing of pipe-roof structures has been the subject of much research, uncertainties of deformation mechanism and the derivation of reliable calculation methods remain a challenge. For efficient design and wider deployment, this paper presents a bidirectional bending test to investigate the bending stiffnesses, load capacities and deformation mechanisms. The results show that the STS specimens exhibit good ductility and experience bending failure, and their deformation curves follow a half-sine wave upon loading. On this basis, the development of an STS composite slab deformation prediction model is proposed, along with the estimation for its bending stiffness. Theoretical predictions are shown to be in good agreement with the experimental measurements, with a maximum error of less than 15%. The outcomes of this investigation can provide references for the design and application of STS structures.展开更多
High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material...High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.展开更多
A new dimensionless number is proposed for dynamic plastic deformation analysis of clamped circular plates under underwater explosion loads by introducing dimensional analysis method to the basic dynamical governing e...A new dimensionless number is proposed for dynamic plastic deformation analysis of clamped circular plates under underwater explosion loads by introducing dimensional analysis method to the basic dynamical governing equations of circular plates.The relation between dimensionless final plastic deformation of circular plates and the new dimensionless number is established based on massive underwater explosion test data.Meanwhile,comparative analysis was discussed with two other published dimensionless parameters which indicated the new dimensionless number proposed in this paper is more effective and extensive to predict the dynamic plastic response of circular plates under underwater explosion condition.展开更多
The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is c...The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method.展开更多
An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of stren...An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of strength of the target on the deformation patterns.The experimental results revealed slight mass loss in the first layer of the steel target during the transient entrance phase,with an extremely negligible loss in target mass during the quasi-steady penetration phase.The results of macro-analysis,micro-analysis and simulation show that the eroded target material migrated towards the periphery of the crater,causing an increase in the target's thickness,remained within the target,instead of flowing out of the crater.Therefore,the process of long rods penetrating the metal target is considered as a process of backward extrusion.By combining the backward extrusion theory with energy conservation,a penetration depth model for long rods penetrating a metal target,taking into account both the diameter of the crater and the friction coefficient between the rod and the target,has been established.Although the model is not yet perfect,it innovatively applies the principles of solid mechanics to the study of long rod penetration.Additionally,it takes into account the friction coefficient between the rod and the target during the penetration process.Therefore,this model provides a new research direction for future studies on long rod penetration.展开更多
Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat trea...Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys.展开更多
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri...A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.展开更多
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar...In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.展开更多
In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volu...In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure.展开更多
This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive appro...This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry.展开更多
In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was inve...In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was investigated.The rolled Mg-3Zn-0.5Zr-0.6Nd alloy exhibited an ultimate tensile strength of 386 MPa,a yield strength of 361 MPa,and an elongation of 7.1%.Annealing at different temperatures resulted in reduced strength and obviously increased elongation for both alloys.Optimal mechanical properties for the Mg-3Zn-0.5Zr-0.6Nd alloy were achieved after annealing at 200℃,with an ultimate tensile strength of 287 MPa,a yield strength of 235 MPa,and an elongation of 26.1%.The numerous deformed microstructures,twins,and precipitated phases in the rolled alloy could impede the deformation at room temperature and increase the work hardening rate.After annealing,a decrease in the work hardening effect and an increase in the dynamic recovery effect were obtained due to the formation of fine equiaxed grains,and the increased volume fraction of precipitated phases,which significantly improved the elongation of the alloy.Additionally,the addition of Nd element could enhance the annealing recrystallization rate,reduce the Schmid factor difference between basal and prismatic slip systems,facilitate multi-system slip initiation and improve the alloy plasticity.展开更多
This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtai...This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects.展开更多
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati...The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation.展开更多
文摘[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development.
基金National Natural Science Foundation of China(12161013)Research Projects of Guizhou University of Commerce in 2024。
文摘The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.
基金Project(52174303)supported by the National Natural Science Foundation of ChinaProject(2023JH2/101700302)supported by the Joint Program of Science and Technology Plans in Liaoning Province,China。
文摘Based on microstructure analysis,diffusion theory,and hot deformation experiments,the solidification microstructure and element segregation of the Alloy 625 Plus ingot,the diffusion kinetics of Ti,Nb,and Mo during homogenization and the hot deformation behavior of the homogenized ingot were investigated in this study.The results indicate that:(1)the solidified ingot exhibits a typical dendritic microstructure,and significant element segregation occurs,leading to the presence of Ti,Nb,and Mo-rich precipitates in the interdendritic region;(2)Following homogenization,the degree of element segregation in the ingot is significantly reduced.The diffusion coefficients(D)of Ti,Nb,and Mo under various homogenization conditions were calculated.Subsequently,the diffusion constants(D_(0))and activation energies(Q)of Ti,Nb,and Mo were obtained to be 0.01432,0.00397 and 0.00195 cm^(2)/s and 244.851,230.312,and 222.125 kJ/mol,respectively.Finally,the diffusion kinetics formulas for Ti,Nb,and Mo in Alloy 625 Plus were established.After homogenization at 1220℃for 8 h,the alloy exhibits low deformation resistance,a high degree of recrystallization,and optimal deformation coordination ability.Therefore,this represents a rational single-stage homogenization process.
基金Project(2024QN05053)supported by the Natural Science Foundation of Inner Mongolia,ChinaProjects(U24A20106,51931005,52171048)supported by the National Natural Science Foundation of ChinaProject(2020ZDLGY12-02)supported by the Key Industry Innovation Chain Project of Shaanxi Province,China。
文摘The microstructure,fracture mechanisms,deformation modes,and their correlation with the mechanical properties of Mg-Zn-Gd alloys were analyzed,considering the influence of Y and Nd additions.Increasing Y content and decreasing Nd content resulted in an increase in grain size from 17.2 to 29.2μm,and two types of LPSO phases,14 H and 18 R,formed in the alloy.The mechanical properties of the alloys were predominantly influenced by the LPSO phase,with the grain size effect being relatively minor.Based on this analysis,higher Y and lower Nd contents enhanced the tensile strength,yield strength,and elongation of the alloys,with additional improvements observed following solid solution treatment.Changes in Y and Nd content caused a shift in fracture patterns,transitioning from ductile fracture to brittle fracture and then to mixed fracture.Following solid solution treatment,the alloy progressively transitions from intergranular to a combination of ductile and deconvolutional fracture.The deformation modes observed at each stage are as follows:an increase in LPSO phases and twins activates pyramidal slip and suppresses prismatic slip.
基金Project(52205421)supported by the National Natural Science Foundation of ChinaProject(AA23023028)supported by the Guangxi Science and Technology Major Project,China+2 种基金Projects(2022B0909070001,2020B010186001)supported by the Key Research and Development Projects of Guangdong Province,ChinaProject(2021B0101220006)supported by the Guangdong Key Areas Research and Development Program“Chip,Software and Computing”Major Project,ChinaProjects(2021RC2087,2022JJ30570)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.
基金Project(BK20210721) supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(52108380,52078506) supported by the National Natural Science Foundation of ChinaProject(2023A1515012159) supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space development. Whilst the load-bearing of pipe-roof structures has been the subject of much research, uncertainties of deformation mechanism and the derivation of reliable calculation methods remain a challenge. For efficient design and wider deployment, this paper presents a bidirectional bending test to investigate the bending stiffnesses, load capacities and deformation mechanisms. The results show that the STS specimens exhibit good ductility and experience bending failure, and their deformation curves follow a half-sine wave upon loading. On this basis, the development of an STS composite slab deformation prediction model is proposed, along with the estimation for its bending stiffness. Theoretical predictions are shown to be in good agreement with the experimental measurements, with a maximum error of less than 15%. The outcomes of this investigation can provide references for the design and application of STS structures.
基金Project(52274369)supported by the National Natural Science Foundation of China。
文摘High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.
基金supported by the National Natural Science Foundation of China(12402444)。
文摘A new dimensionless number is proposed for dynamic plastic deformation analysis of clamped circular plates under underwater explosion loads by introducing dimensional analysis method to the basic dynamical governing equations of circular plates.The relation between dimensionless final plastic deformation of circular plates and the new dimensionless number is established based on massive underwater explosion test data.Meanwhile,comparative analysis was discussed with two other published dimensionless parameters which indicated the new dimensionless number proposed in this paper is more effective and extensive to predict the dynamic plastic response of circular plates under underwater explosion condition.
基金Projects(42307192,41831278)supported by the National Natural Science Foundation of ChinaProject(CKWV20231175/KY)supported by the CRSRI Open Research Program,China。
文摘The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102201,U2341244).
文摘An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of strength of the target on the deformation patterns.The experimental results revealed slight mass loss in the first layer of the steel target during the transient entrance phase,with an extremely negligible loss in target mass during the quasi-steady penetration phase.The results of macro-analysis,micro-analysis and simulation show that the eroded target material migrated towards the periphery of the crater,causing an increase in the target's thickness,remained within the target,instead of flowing out of the crater.Therefore,the process of long rods penetrating the metal target is considered as a process of backward extrusion.By combining the backward extrusion theory with energy conservation,a penetration depth model for long rods penetrating a metal target,taking into account both the diameter of the crater and the friction coefficient between the rod and the target,has been established.Although the model is not yet perfect,it innovatively applies the principles of solid mechanics to the study of long rod penetration.Additionally,it takes into account the friction coefficient between the rod and the target during the penetration process.Therefore,this model provides a new research direction for future studies on long rod penetration.
基金Project(2021YFB3700801)supported by the National Key Research and Development Program of ChinaProject(2023JJ30683)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the State Key Laboratory of Powder Metallurgy(Central South University),China。
文摘Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys.
基金Project(41941018)supported by the National Natural Science Foundation of China for the Special Project FundingProject(22-JKCF-08)supported by the Study on in-situ Stress Database and 3D in-situ Stress Inversion Technology of Highway Tunnel in Shanxi Province,China+1 种基金Project(2022-JKKJ-6)supported by the Study on Disaster Mechanism and NPR Anchor Cable Prevention and Control of Coal Mining Caving Subsidence in Operating Tunnel in Mountainous Area,ChinaProject(BBJ2024032)supported by the Fundamental Research Funds for the Central Universities(PhD Top Innovative Talents Fund of CUMTB),China。
文摘A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.
基金supported by Beijing Insititute of Technology Research Fund Program for Young Scholars(2020X04104)。
文摘In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.
文摘In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure.
基金Project(52104139)supported by the National Natural Science Foundation of China Youth Science FoundationProject(SKLGDUEK2132)supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology/China University of Mining and Technology-BeijingProjects([2020]2Y030,[2020]2Y019,[2020j3007,[2020]3008,and[2022j0il]supported by the Guizhou Province Science and Technology Planning,China Project(2022B01051)supported by the Key Research and Development Special Tasks of Xinjiang,China。
文摘This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry.
基金Project(202203021221088)supported by the Fundamental Research Program of Shanxi Province,ChinaProject(20230010)supported by the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province,China+5 种基金Project(202201050201012)supported by the Shanxi Provincial Science and Technology Major Special Project Plan of Taking the Lead in Unveiling the List,ChinaProject(2023-063)supported by the Research Project Supported by Shanxi Scholarship Council of ChinaProjects(51771129,52271109)supported by the National Natural Science Foundation of ChinaProject(2021YFB3703300)supported by the National Key Research and Development Program for Young Scientists,ChinaProject(YDZJSX2021B019)supported by the Special Fund Project for Guiding Local Science and Technology Development by the Central Government,ChinaProject(SKL-YSJ202103)supported by the Open Foundation of State Key Laboratory of High-end Compressor and System Technology,China。
文摘In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was investigated.The rolled Mg-3Zn-0.5Zr-0.6Nd alloy exhibited an ultimate tensile strength of 386 MPa,a yield strength of 361 MPa,and an elongation of 7.1%.Annealing at different temperatures resulted in reduced strength and obviously increased elongation for both alloys.Optimal mechanical properties for the Mg-3Zn-0.5Zr-0.6Nd alloy were achieved after annealing at 200℃,with an ultimate tensile strength of 287 MPa,a yield strength of 235 MPa,and an elongation of 26.1%.The numerous deformed microstructures,twins,and precipitated phases in the rolled alloy could impede the deformation at room temperature and increase the work hardening rate.After annealing,a decrease in the work hardening effect and an increase in the dynamic recovery effect were obtained due to the formation of fine equiaxed grains,and the increased volume fraction of precipitated phases,which significantly improved the elongation of the alloy.Additionally,the addition of Nd element could enhance the annealing recrystallization rate,reduce the Schmid factor difference between basal and prismatic slip systems,facilitate multi-system slip initiation and improve the alloy plasticity.
基金Projects(52108364,52278398)supported by the National Natural Science Foundation of ChinaProject(211179)supported by the Royal Society,UK+1 种基金Project(22CX06051A)supported by the Independent Innovation Research Plan Project of China University of Petroleum(East China)Project(ZR2023QE004)supported by the Shandong Provincial Natural Science Foundation,China。
文摘This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects.
文摘The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation.