期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Model heat source using actual distribution of laser power density for simulation of laser processing 被引量:4
1
作者 WANG Gen-wang DING Ye +2 位作者 GUAN Yan-chao WANG Yang YANG Li-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3277-3293,共17页
The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although vari... The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing. 展开更多
关键词 heat source laser processing distribution of power density digital images processing heat transfer
在线阅读 下载PDF
A review on electrospun carbon-based materials for lithium-ion capacitors
2
作者 ZHANG Qian YAO Shu-yu +5 位作者 LI Chen AN Ya-bin SUN Xian-zhong WANG Kai ZHANG Xiong MA Yan-wei 《新型炭材料(中英文)》 北大核心 2025年第4期782-821,共40页
In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with ... In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with the high power density of supercapacitors,have emerged as promising candidates.However,challenges such as poor capacity matching and limited energy density still hinder their practical application.Carbon nanofibers(CNFs),with their high specific surface area,excellent electrical conductivity,mechanical flexibility,and strong compatibility with active materials,are regarded as ideal electrode frameworks for LICs.This review summarizes key strategies to improve the electrochemical performance of CNF-based LICs,including structural engineering,heteroatom doping,and hybridization with transition metal oxides.The underlying mechanisms of each approach are discussed in detail,with a focus on their roles in improving capacitance,energy density,and cycling stability.This review aims to provide insights into material design and guide future research toward high-performance LICs for next-generation energy storage applications. 展开更多
关键词 Lithium-ion capacitors Carbon nanofibers ELECTROSPINNING Energy density power density
在线阅读 下载PDF
rTMS Improves Cognitive Function and Brain Network Connectivity in Patients With Alzheimer’s Disease
3
作者 XU Gui-Zhi LIU Lin +4 位作者 GUO Miao-Miao WANG Tian GAO Jiao-Jiao JI Yong WANG Pan 《生物化学与生物物理进展》 北大核心 2025年第8期2131-2145,共15页
Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,n... Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,neural oscillatory dynamics,and brain network reorganization remain unclear.This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments,molecular profiling,and neurophysiological monitoring.Methods In this prospective double-blind trial,12 AD patients underwent a 14-day protocol of 20 Hz rTMS,with comprehensive multimodal assessments performed pre-and postintervention.Cognitive functioning was quantified using the mini-mental state examination(MMSE)and Montreal cognitive assessment(MOCA),while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living(ADL)scale and combined neuropsychiatric inventory(NPI)-Hamilton depression rating scale(HAMD).Peripheral blood biomarkers,specifically Aβ1-40 and phosphorylated tau(p-tau181),were analyzed to investigate the effects of rTMS on molecular metabolism.Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients,while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization.Furthermore,systematic assessment of correlations between cognitive scale scores,blood biomarkers,and network characteristics was performed to elucidate cross-modal therapeutic associations.Results Clinically,MMSE and MOCA scores improved significantly(P<0.05).Biomarker showed that Aβ1-40 level increased(P<0.05),contrasting with p-tau181 reduction.Moreover,the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores.Post-intervention analyses revealed significant modulations in oscillatory power,characterized by pronounced reductions in delta(P<0.05)and theta bands(P<0.05),while concurrent enhancements were observed in alpha,beta,and gamma band activities(all P<0.05).Network analysis revealed frequency-specific reorganization:clustering coefficients were significantly decreased in delta,theta,and alpha bands(P<0.05),while global efficiency improvement was exclusively detected in the delta band(P<0.05).The alpha band demonstrated concurrent increases in average nodal degree(P<0.05)and characteristic path length reduction(P<0.05).Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181.Additionally,the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band.However,the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands.Conclusion 20 Hz rTMS targeting dorsolateral prefrontal cortex(DLPFC)significantly improves cognitive function and enhances the metabolic clearance ofβ-amyloid and tau proteins in AD patients.This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation,which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks.These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales,blood biomarkers,and EEG——in understanding and monitoring the progression of AD.This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment. 展开更多
关键词 transcranial magnetic stimulation Alzheimer’s disease power spectral density ELECTROENCEPHALOGRAM brain functional network
在线阅读 下载PDF
Comparison of two types of twin-rotor piston engine mechanisms 被引量:6
4
作者 邓豪 潘存云 +2 位作者 王晓聪 张雷 邓力 《Journal of Central South University》 SCIE EI CAS 2013年第2期363-371,共9页
A novel twin-rotor piston engine (TRPE) mechanism with high volumetric output and power density was introduced. This new engine comprises an energy conversion system and a differential velocity drive mechanism (DVD... A novel twin-rotor piston engine (TRPE) mechanism with high volumetric output and power density was introduced. This new engine comprises an energy conversion system and a differential velocity drive mechanism (DVDM). Two special geared four-bar mechanisms, DVDM-1 and DVDM-2, were utilized and compared. Based on the closed loop vector method, a mathematical model for position, velocity, and acceleration of the two mechanisms was established. Numerical examples illustrate that the kinematic characteristics were presented. Expression of the displacement and compression ratio of the two engine mechanisms were derived and compared. It is concluded that both DVDM-1 and DVDM-2 adopted in the proposed TRPE with six vane pistons create thirty-six power strokes per revolution of the output shaft, and the summation of two angles covered by each rocker is always 2x/N as the output shaft rotates an angle of x/N. In DVDM-1, the span angle of a vane piston should be designed to be 10.2°, and the compression ratio should be equal to 10; in DVDM-2, the span angle of a vane piston should be designed to be 10.6°, and the compression ratio should be equal to 4.3. 展开更多
关键词 ROTOR piston engine CRANK ROCKER power density
在线阅读 下载PDF
The application of metal-organic frameworks and their derivatives for lithium-ion capacitors 被引量:1
5
作者 ZHAO Sha-sha ZHANG Xiong +5 位作者 LI Chen AN Ya-bin HU Tao WANG Kai SUN Xian-zhong MA Yan-wei 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期872-895,共24页
There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of t... There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors(SCs).Nevertheless,the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode.Metal-organic frameworks(MOFs)and their derivatives have received significant attention because of their extensive specific surface area,different pore structures and topologies,and customizable functional sites,making them compelling candidate materials for achieving high-performance LICs.MOF-derived carbons,known for their exceptional electronic conductivity and large surface area,provide improved charge storage and rapid ion transport.MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability.Additionally,MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions,leading to a superior overall performance.The review begins with an overview of the fundamental principles of LICs,followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials.It then analyzes the advantages of original MOFs and their derived materials,such as carbon materials and metal compounds,in enhancing LIC performance.Finally,the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations. 展开更多
关键词 Lithium-ion capacitors MOFS Transition metal oxide Energy density power density
在线阅读 下载PDF
Mathematical modeling and analysis of gas torque in twin-rotor piston engine
6
作者 邓豪 潘存云 +1 位作者 徐小军 张湘 《Journal of Central South University》 SCIE EI CAS 2013年第12期3536-3544,共9页
The gas torque in a twin-rotor piston engine(TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power densi... The gas torque in a twin-rotor piston engine(TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power density engines and can produce 36 power strokes per shaft revolution. Compared with the conventional engines, the vector sum of combustion gas forces acting on each rotor piston in TRPE is a pure torque, and the combustion gas rotates the rotors while compresses the gas in the compression chamber at the same time. Mathematical modeling of gas force transmission was built. Expression for gas torque on each rotor was derived. Different variation patterns of the volume change of working chamber were introduced. The analytical and numerical results is presented to demonstrate the main characteristics of gas torque. The results show that the value of gas torque in TRPE falls to be less than zero before the combustion phase is finished; the time for one stroke is 30° in terms of the rotating angle of the output shaft; gas torque in one complete revolution of the output shaft has a period which is equal to 60° and it is necessary to put off the moment when gas torque becomes zero in order to export the maximum energy. 展开更多
关键词 ROTOR piston engine gas torque power density adiabatic process
在线阅读 下载PDF
Choice of reference surfaces for machined surface roughness in milling of SiC_p/Al composites 被引量:4
7
作者 王阳俊 黄海波 +1 位作者 陈立国 孙立宁 《Journal of Central South University》 SCIE EI CAS 2014年第11期4150-4156,共7页
In order to choose the appropriate reference surface on the machined surface roughness of Si Cp/Al composites, the cutting experiments of Si Cp/Al composites were carried out, and the machined surface topography was m... In order to choose the appropriate reference surface on the machined surface roughness of Si Cp/Al composites, the cutting experiments of Si Cp/Al composites were carried out, and the machined surface topography was measured by OLS3000 Confocal laser scanning microscope. The 3D measured data of machined surface topography were analyzed by the area power spectrum density. The result shows that the texture of machined surface topography in milling of Si Cp/Al composites is almost isotropic. This is the reason that the values of Rq at different locations on the same machined surface are obviously different. Through the comparison of performance of different filtering methods, the robust least squares reference surface can be used to extract the surface roughness of SiC p/Al composites effectively. 展开更多
关键词 SiCp/Al composites surface topography milling filtering method power spectrum density
在线阅读 下载PDF
Dual transponder ranging performance in the presence of oscillator phase noise 被引量:1
8
作者 赵明臣 王春晖 +1 位作者 金小军 金仲和 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1350-1357,共8页
A dual transponder carrier ranging method can be used to measure inter-satellite distance with high precision by combining the reference and the to-and-fro measurements. Based on the differential techniques, the oscil... A dual transponder carrier ranging method can be used to measure inter-satellite distance with high precision by combining the reference and the to-and-fro measurements. Based on the differential techniques, the oscillator phase noise, which is the main error source for microwave ranging systems, can be significantly attenuated. Further, since the range measurements are derived on the same satellite, the dual transponder ranging system does not need a time tagging system to synchronize the two satellites. In view of the lack of oscillator noise analysis on the dual transponder ranging model, a comprehensive analysis of oscillator noise effects on ranging accuracy is provided. First, the dual transponder ranging system is described with emphasis on the detailed analysis of oscillator noise on measurement precision. Then, a high-fidelity numerical simulation approach based on the power spectrum density of an actual ultra-stable oscillator is carried out in both frequency domain and time domain to support the presented theoretical analysis. The simulation results under different conditions are consistent with the proposed concepts, which makes the results reliable. Besides, the results demonstrate that a high level of accuracy can be achieved by using this oscillator noise cancelation-oriented ranging method. 展开更多
关键词 inter-satellite carrier ranging oscillator phase noise power spectral density high precision
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部