弛豫铁电体因其卓越的介电和压电特性,在传感器、光电器件、高密度存储器、类脑计算等领域展现出广泛的应用潜力。然而,纳米尺度超薄膜的弛豫特性研究受到严重漏电流的限制,基于Sawyer-Tower电路和Positive-Up-Negative-Down(PUND)脉冲...弛豫铁电体因其卓越的介电和压电特性,在传感器、光电器件、高密度存储器、类脑计算等领域展现出广泛的应用潜力。然而,纳米尺度超薄膜的弛豫特性研究受到严重漏电流的限制,基于Sawyer-Tower电路和Positive-Up-Negative-Down(PUND)脉冲波形的测试方法存在显著挑战。本研究提出了一种基于压电力显微镜(Piezoresponse Force Microscopy, PFM)的测试方法,来研究纳米尺度弛豫薄膜的极化特性。以Pb(Mg,Nb)O_(3)-PbTiO_(3)(PMN-PT)超薄膜为例,比较了不同厚度的PMN-PT弛豫薄膜与铁电Pb(Zr,Ti)O_(3)(PZT)薄膜在双频追踪PFM(DART-PFM)测量中On-field和Off-field两种模式下的极化回滞行为。通过调节PFM回线测量中的用于极化读出的交流信号电压振幅,系统表征了纳米厚度PMN-PT薄膜的弛豫特性。进一步对不同面内应变和厚度的PMN-PT超薄膜进行PFM测试,发现在较大压缩应变(3.19%)下,弛豫特性被抑制,表现出显著的铁电特性,并观测到铁电-弛豫转变的临界厚度。这些实验结果验证了所提出测试方法的有效性。本研究不仅为超薄膜弛豫特性的探索提供了一种新的表征方法,也为理解铁电材料的弛豫极化行为奠定了基础,推动了弛豫铁电材料在低维电子学器件中的应用。展开更多
为研究纸板劣化对其极化去极化电流(polarization and depolarization currents,PDC)特性的影响,在实验室内对油浸变压器绝缘纸板进行加速热老化,在不同老化阶段取出纸板试品,对不同老化状态的纸板进行石油醚萃取变压器油和真空干燥处...为研究纸板劣化对其极化去极化电流(polarization and depolarization currents,PDC)特性的影响,在实验室内对油浸变压器绝缘纸板进行加速热老化,在不同老化阶段取出纸板试品,对不同老化状态的纸板进行石油醚萃取变压器油和真空干燥处理。为了表征绝缘纸板的老化状态,对各老化阶段的纸板采用粘度法测量聚合度,并使用扫描电子显微镜(scanning electron microscope,SEM)观察纤维素表面的微观结构及破坏状况。在同一温度下,对干燥后不同老化状态的纸板分别进行真空中和新变压器油浸渍条件下的PDC测量。结果表明,随着老化时间的延长,纸板聚合度下降,纤维表面微观结构破坏明显。纸板劣化造成真空中和油浸渍的纸板极化去极化电流显著增大,电导率增加,并导致其绝缘电阻降低,吸收比减小。因此,对于油纸绝缘,除老化产生的水分外,纸板劣化本身也将导致纸板电导率的增大,并显著影响其极化去极化电流的测量结果。展开更多
文摘弛豫铁电体因其卓越的介电和压电特性,在传感器、光电器件、高密度存储器、类脑计算等领域展现出广泛的应用潜力。然而,纳米尺度超薄膜的弛豫特性研究受到严重漏电流的限制,基于Sawyer-Tower电路和Positive-Up-Negative-Down(PUND)脉冲波形的测试方法存在显著挑战。本研究提出了一种基于压电力显微镜(Piezoresponse Force Microscopy, PFM)的测试方法,来研究纳米尺度弛豫薄膜的极化特性。以Pb(Mg,Nb)O_(3)-PbTiO_(3)(PMN-PT)超薄膜为例,比较了不同厚度的PMN-PT弛豫薄膜与铁电Pb(Zr,Ti)O_(3)(PZT)薄膜在双频追踪PFM(DART-PFM)测量中On-field和Off-field两种模式下的极化回滞行为。通过调节PFM回线测量中的用于极化读出的交流信号电压振幅,系统表征了纳米厚度PMN-PT薄膜的弛豫特性。进一步对不同面内应变和厚度的PMN-PT超薄膜进行PFM测试,发现在较大压缩应变(3.19%)下,弛豫特性被抑制,表现出显著的铁电特性,并观测到铁电-弛豫转变的临界厚度。这些实验结果验证了所提出测试方法的有效性。本研究不仅为超薄膜弛豫特性的探索提供了一种新的表征方法,也为理解铁电材料的弛豫极化行为奠定了基础,推动了弛豫铁电材料在低维电子学器件中的应用。
文摘为研究纸板劣化对其极化去极化电流(polarization and depolarization currents,PDC)特性的影响,在实验室内对油浸变压器绝缘纸板进行加速热老化,在不同老化阶段取出纸板试品,对不同老化状态的纸板进行石油醚萃取变压器油和真空干燥处理。为了表征绝缘纸板的老化状态,对各老化阶段的纸板采用粘度法测量聚合度,并使用扫描电子显微镜(scanning electron microscope,SEM)观察纤维素表面的微观结构及破坏状况。在同一温度下,对干燥后不同老化状态的纸板分别进行真空中和新变压器油浸渍条件下的PDC测量。结果表明,随着老化时间的延长,纸板聚合度下降,纤维表面微观结构破坏明显。纸板劣化造成真空中和油浸渍的纸板极化去极化电流显著增大,电导率增加,并导致其绝缘电阻降低,吸收比减小。因此,对于油纸绝缘,除老化产生的水分外,纸板劣化本身也将导致纸板电导率的增大,并显著影响其极化去极化电流的测量结果。