A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM...A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM using an unequal power distribution strategy.In addition,a reduced complexity selective mapping (RC-SLM) scheme was proposed.The proposed scheme is based on partitioning the frequency domain symbol sequence into several sub-blocks,and then each sub-block is multiplied by different phase sequences whose length is shorter than that used in the conventional SLM scheme.Then,a kind of low complexity conversions is used to replace the IFFT blocks.The performance of the proposed RC-SLM scheme along with the new approach was studied with computer simulation.The obtained results show that the proposed RC-SLM scheme is able to achieve the lowest computational complexity when compared with other low complexity schemes proposed in the literature while at the same time improves the PAPR reduction performance by about 0.3 dB.展开更多
Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI...Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.展开更多
文摘A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM using an unequal power distribution strategy.In addition,a reduced complexity selective mapping (RC-SLM) scheme was proposed.The proposed scheme is based on partitioning the frequency domain symbol sequence into several sub-blocks,and then each sub-block is multiplied by different phase sequences whose length is shorter than that used in the conventional SLM scheme.Then,a kind of low complexity conversions is used to replace the IFFT blocks.The performance of the proposed RC-SLM scheme along with the new approach was studied with computer simulation.The obtained results show that the proposed RC-SLM scheme is able to achieve the lowest computational complexity when compared with other low complexity schemes proposed in the literature while at the same time improves the PAPR reduction performance by about 0.3 dB.
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
基金supported by the Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(N200904)the Nanjing University of Aeronautics and Astronautics (NUAA) Research Funding (NS2010113)the National Natural Science Foundation of China (61172077)
文摘Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.