期刊文献+
共找到5,495篇文章
< 1 2 250 >
每页显示 20 50 100
基于K-Means、XGBoost和PSO的高炉布料矩阵优化研究
1
作者 董壮壮 王月明 《现代电子技术》 北大核心 2025年第12期120-128,共9页
优化布料矩阵是实现高炉节能降碳的关键环节,然而现有研究对布料矩阵与燃料消耗参数的映射关系尚未充分揭示。为此,提出一种基于K-Means聚类、极端梯度提升(XGBoost)和粒子群优化(PSO)算法的高炉布料矩阵优化方法。首先,在高炉布料矩阵... 优化布料矩阵是实现高炉节能降碳的关键环节,然而现有研究对布料矩阵与燃料消耗参数的映射关系尚未充分揭示。为此,提出一种基于K-Means聚类、极端梯度提升(XGBoost)和粒子群优化(PSO)算法的高炉布料矩阵优化方法。首先,在高炉布料矩阵聚类方面对比分析K-Means和模糊C均值两个聚类算法,选择聚类效果较好的K-Means模型对高炉炉况进行聚类分析;然后,结合K-Means聚类结果和特征选取,提取布料矩阵关键特征参数,并建立XGBoost、径向基神经网络和随机森林模型来预测高炉燃料比,选择对燃料比预测最准确的XGBoost模型作为预测模型;最后,在XGBoost模型基础上,分别采用PSO和遗传算法进行燃料比最小值寻优并对比,选择优化效果较好的PSO进行结果分析。结果表明,所提方法能够在一定程度上改善高炉矿石熔化条件,降低燃料比,促进高炉节能降碳。 展开更多
关键词 高炉 布料矩阵 k-means XGBoost 粒子群算法 节能降碳
在线阅读 下载PDF
基于K-means聚类粒子群算法的海洋结构迭代型损伤识别方法
2
作者 周旭涛 赵海旭 +2 位作者 蒋玉峰 王树青 刘雨 《中国海洋大学学报(自然科学版)》 北大核心 2025年第4期134-147,共14页
为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷... 为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷入局部最优解,同时,采用迭代思想对传统损伤识别方法进行改进,将损伤识别结果进行迭代更新,以获得准确的损伤位置及损伤程度。以某三腿海上风机结构为例:首先,探讨了非迭代型方法在无噪声和有噪声污染时的结构损伤识别效果;其次,分析所提出的迭代型方法在无噪声和有噪声污染两种情况下的结构损伤识别效果;然后,探究了所提出方法的收敛性及稳定性;最后,采用物理模型试验对提出的方法进行了验证。结果表明,提出的迭代型聚类粒子群算法相比传统结构损伤识别方法可获得更准确的损伤位置及损伤程度,并展现出良好的噪声鲁棒性,且算法迭代次数少,识别效果稳定。 展开更多
关键词 k-means聚类粒子群算法 损伤识别 海上风机结构 迭代型方法
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
3
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
一种嵌套K-means聚类的任意形状波束子阵划分方法
4
作者 张清河 李宇航 +1 位作者 沈钊阳 文方青 《电子学报》 北大核心 2025年第1期119-127,共9页
传统相控阵由于其高昂成本的限制,已经无法满足日益增长的广泛应用需求,而基于稀疏阵、子阵等技术的非传统相控阵技术则得到了广泛的关注和研究.如何有效地划分子阵,以及如何优化子阵的计算过程,是提高计算效率和性能的关键问题.本文提... 传统相控阵由于其高昂成本的限制,已经无法满足日益增长的广泛应用需求,而基于稀疏阵、子阵等技术的非传统相控阵技术则得到了广泛的关注和研究.如何有效地划分子阵,以及如何优化子阵的计算过程,是提高计算效率和性能的关键问题.本文提出一种融合群智能优化算法及聚类技术的嵌套迭代优化方法来解决任意形状波束子阵划分问题.该方法包含内、外两个嵌套循环迭代优化过程:(i)外循环采用群智能优化方法来实现用户定义任意方向图下的参考阵列,并利用谢昆诺夫多项式和基本代数理论分析得到多组不同的阵列单元复激励(由阵因子多项式分布在非谢昆诺夫单位圆上的根所决定);(ii)内循环基于激励匹配策略,专注于通过K-means聚类方法实现阵列天线的最优子阵布局及相应的子阵复激励系数,并最终产生一个逼近参考阵列的波束方向图.通过与传统K-means聚类方法、粒子群优化方法在方向图逼近、激励匹配误差、模式匹配误差、阵列性能参数及计算效率等方面的比较,验证了所提方法的有效性. 展开更多
关键词 任意形状波束阵列 子阵划分 嵌套k-means聚类 激励匹配策略 群智能优化方法
在线阅读 下载PDF
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
5
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
在线阅读 下载PDF
光伏波动平抑下改进K-means的电池储能动态分组控制策略 被引量:5
6
作者 余洋 陆文韬 +3 位作者 陈东阳 刘霡 夏雨星 郑晓明 《电力系统保护与控制》 EI CSCD 北大核心 2024年第7期1-11,共11页
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并... 针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。 展开更多
关键词 电池储能系统 波动平抑 功率分配 改进侏儒猫鼬优化算法 改进k-means聚类算法
在线阅读 下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
7
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
在线阅读 下载PDF
An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm 被引量:3
8
作者 吴静敏 左洪福 陈勇 《Journal of Central South University》 SCIE EI CAS 2005年第S2期95-101,共7页
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se... A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network. 展开更多
关键词 aircraft design maintenance COST particle swarm optimization IMMUNITY algorithm PREDICT
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
9
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
10
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
An extended particle swarm optimization algorithm based on coarse-grained and fine-grained criteria and its application 被引量:2
11
作者 李星梅 张立辉 +1 位作者 乞建勋 张素芳 《Journal of Central South University of Technology》 EI 2008年第1期141-146,共6页
In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using... In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO. 展开更多
关键词 particle swarm extended particle swarm optimization algorithm resource leveling
在线阅读 下载PDF
基于改进K-means算法的分布式发电集群划分方法 被引量:5
12
作者 尉同正 杜红卫 +3 位作者 夏栋 韩韬 吴雪琼 徐政 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第6期49-57,共9页
随着大规模分布式电源的接入,采用集中式控制的传统配电网面临通信延时、计算量大与控制设备过多等问题,而基于集群划分的分布式发电群调群控技术能有效解决上述问题。而现有集群划分方法在集群划分指标与集群划分算法上均存在一定不足... 随着大规模分布式电源的接入,采用集中式控制的传统配电网面临通信延时、计算量大与控制设备过多等问题,而基于集群划分的分布式发电群调群控技术能有效解决上述问题。而现有集群划分方法在集群划分指标与集群划分算法上均存在一定不足,因此提出一种考虑集群规模的分布式发电集群划分方法。首先,提出考虑电气距离、集群功率平衡以及集群规模的综合性集群划分指标体系,在保证集群结构强度的基础上使集群具有一定电压调节能力。其次,采用嵌入莱维飞行优策略的灰狼优化算法,对K-means算法进行改进,并将其应用于集群划分。最后,以某地实际35 kV/10 kV配电网验证了所提方法的可行性与有效性,为分布式发电集群划分提供参考。 展开更多
关键词 灰狼优化算法 莱维飞行 k-means算法 分布式电源 集群划分
在线阅读 下载PDF
基于BBO优化K-means算法的WSN分簇路由算法 被引量:2
13
作者 彭程 谭冲 +1 位作者 刘洪 郑敏 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第3期357-364,共8页
针对无线传感器网络中传感器节点能量有限、网络生存期短的问题,提出一种基于生物地理学算法优化K-means的无线传感器网络分簇路由算法BBOK-GA。成簇阶段,通过生物地理学优化算法改进K-means算法,避免求解时陷入局部最优。根据能量因子... 针对无线传感器网络中传感器节点能量有限、网络生存期短的问题,提出一种基于生物地理学算法优化K-means的无线传感器网络分簇路由算法BBOK-GA。成簇阶段,通过生物地理学优化算法改进K-means算法,避免求解时陷入局部最优。根据能量因子和距离因子设计了新的适应度函数选举最优簇首,完成分簇任务。数据传输阶段,则利用遗传算法为簇首节点搜寻到基站的最佳数据传输路径。仿真结果表明,相较于LEACH、LEACH-C、K-GA等算法,BBOK-GA降低了网络能耗,提高了网络吞吐量,延长了网络生存周期。 展开更多
关键词 无线传感器网络 生物地理学优化算法 遗传算法 k-means算法 分簇路由
在线阅读 下载PDF
一种基于改进差分进化的K-Means聚类算法研究 被引量:2
14
作者 刘红达 王福顺 +3 位作者 孙小华 张广辉 王斌 何振学 《现代电子技术》 北大核心 2024年第18期156-162,共7页
为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多... 为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多变异策略并引入权重系数,在算法的不同进化阶段发挥不同变异策略的优势,平衡算法的全局和局部搜索能力,加快算法的收敛速度;最后,提出一种基于当前种群最佳个体的高斯扰动交叉操作,为个体提供更优进化方向的同时保持种群在“维”上的多样性,避免算法陷入局部最优。将算法停止执行时输出的最优解作为初始聚类中心替代传统K-Means随机选取的聚类中心。将提出算法在UCI公共数据库中的Vowel、Iris、Glass数据集和合成数据集Jcdx上进行对比实验,误差平方和(SSE)相对于传统K-Means分别减小5.65%、19.59%、13.31%、6.1%,聚类时间分别减少83.03%、81.33%、77.47%、92.63%。实验结果表明,提出的改进算法具有更快的收敛速度和更好的寻优能力,显著提升了聚类的效果、效率和稳定性。 展开更多
关键词 k-means聚类算法 差分进化算法 多变异策略 高斯扰动 UCI数据库 聚类中心优化
在线阅读 下载PDF
基于混沌理论与蜉蝣优化K-means算法的变压器绕组松动故障特征分析方法 被引量:3
15
作者 薛健侗 马宏忠 +2 位作者 倪一铭 万可力 迮恒鹏 《高电压技术》 EI CAS CSCD 北大核心 2024年第8期3783-3792,共10页
为了更加准确有效地对变压器绕组状态进行分析,提出了一种基于混沌理论与蜉蝣优化K-means算法的变压器绕组松动故障特征分析方法。首先,运用C-C法重构变压器振动信号的相空间,分析变压器振动信号的混沌特性,得到关联维数、Kolmogorov熵... 为了更加准确有效地对变压器绕组状态进行分析,提出了一种基于混沌理论与蜉蝣优化K-means算法的变压器绕组松动故障特征分析方法。首先,运用C-C法重构变压器振动信号的相空间,分析变压器振动信号的混沌特性,得到关联维数、Kolmogorov熵作为混沌特征。然后,将蜉蝣优化算法引入K-means聚类分析中,对高维相空间轨迹的簇中心选取进行优化,得到相轨迹的簇中心矩之和、矢径偏移,并作为几何特征。实验结果表明:变压器振动信号的最大Lyapunov指数均大于0,适用于混沌特性分析;由变压器振动信号计算出的混沌特征能够表征变压器绕组的松紧程度;同时,经蜉蝣优化的K-means算法得到的簇中心能够作为特征点提取整个相空间轨迹的几何特征,也能够区分绕组的松动故障;将两种特征结合能够实现变压器绕组状态的准确监测,从而为变压器绕组在线检修提供了一种理论依据。 展开更多
关键词 变压器 绕组松动 混沌理论 蜉蝣优化k-means算法 混沌特征 几何特征
在线阅读 下载PDF
基于混沌理论与麻雀优化K-means算法的变压器铁心松动缺陷分析方法 被引量:1
16
作者 杨洪苏 马宏忠 薛健侗 《科学技术与工程》 北大核心 2024年第25期10798-10807,共10页
为了更加有效地对变压器铁心状态进行分析,提出一种基于混沌理论与麻雀优化K-means算法的变压器铁心松动缺陷特征分析方法。首先,运用C-C法求解重构相空间的嵌入维数与延迟时间,重构变压器振动信号的相空间。其次,计算变压器振动信号的... 为了更加有效地对变压器铁心状态进行分析,提出一种基于混沌理论与麻雀优化K-means算法的变压器铁心松动缺陷特征分析方法。首先,运用C-C法求解重构相空间的嵌入维数与延迟时间,重构变压器振动信号的相空间。其次,计算变压器振动信号的最大Lyapunov指数来判断系统是否具有混沌特性,选取关联维数、Kolmogorov熵作为一组混沌特征以识别铁心的松动程度。再次,将麻雀搜索算法引入K-means聚类算法优化初始中心簇的选取并使用簇中心与簇类点的位移平均值作为描述变压器铁心松动状态的定量特征。最后,将两组特征结合起来形成变压器铁心松动故障的诊断指标,为变压器铁心的松动故障诊断提供理论依据,并投入分类器进行故障诊断,验证两组特征结合的优越性。 展开更多
关键词 变压器 铁心松动 故障诊断 混沌理论 麻雀优化k-means算法。
在线阅读 下载PDF
基于K-means聚类和极限学习机组合算法的短期光伏功率预测 被引量:7
17
作者 黄牧涛 邢芳菲 +1 位作者 陈兴邦 卢明 《水电能源科学》 北大核心 2024年第2期217-220,216,共5页
考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法。首先,基于K-means聚类算法进行天气分型,分为4个季节下晴天、多云天气、阴雨天气共12组不同天气类别。其次,针对天... 考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法。首先,基于K-means聚类算法进行天气分型,分为4个季节下晴天、多云天气、阴雨天气共12组不同天气类别。其次,针对天气分型结果,基于极限学习机ELM、遗传算法改进的极限学习机GA-ELM、鸟群算法改进的极限学习机BSA-ELM3种算法构建光伏功率预测模型。最后,以某光伏电站数据进行所提模型验证。预测结果表明,BSA-ELM预测精度最高,12种天气预测精度达到90%左右,各季节中预测精度最高的天气类型均为晴天,多云天气精度高于阴雨天气精度,可为含高比例光伏并网的新型电力系统安全稳定运行提供有效数据支撑。 展开更多
关键词 光伏发电功率预测 k-means聚类 天气分型 极限学习机算法 遗传算法 鸟群算法
在线阅读 下载PDF
基于K-means聚类的多种群麻雀搜索算法 被引量:4
18
作者 闫少强 刘卫东 +2 位作者 杨萍 吴丰轩 阎哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期508-518,共11页
为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优... 为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优的概率;采用K-means聚类划分子种群,增加子种群间的差异性,同时使子种群内个体在小范围内专注搜索,提升前期搜索效率;借助加权重心交流策略改善种群间交流的质量,减少自身种群的干扰,同时消减因某一子种群陷入局部最优而导致所有子种群陷入局部最优的风险;引入动态反向学习到警戒者中,增强其反捕食行为,改善因子种群数量增加而带来的收敛速度变慢和收敛精度不足的缺陷。经测试函数仿真实验表明:较SSA等算法,KSSA具有更优的寻优性能。 展开更多
关键词 麻雀搜索算法 优化算法 多种群 k-means聚类 种群交流
在线阅读 下载PDF
基于K-Means聚类的粒子群优化CNN-BiGRU-HAM发动机剩余使用寿命预测方法
19
作者 王晓鹏 王磊 +2 位作者 韩小伟 张鹏超 徐浩然 《机床与液压》 北大核心 2024年第20期239-247,共9页
飞机在多种工况条件下运行时,发动机退化特征复杂性不断增加,导致发动机剩余寿命预测精度低。针对此问题,提出一种基于聚类分析的端到端剩余寿命(RUL)预测方法。采用K-Means聚类方法对发动机的多种工况和运行条件进行分组;再利用卷积神... 飞机在多种工况条件下运行时,发动机退化特征复杂性不断增加,导致发动机剩余寿命预测精度低。针对此问题,提出一种基于聚类分析的端到端剩余寿命(RUL)预测方法。采用K-Means聚类方法对发动机的多种工况和运行条件进行分组;再利用卷积神经网络(CNN)提取反映剩余寿命复杂动态变化的高维特征,将结果输入到双向门控循环单元(BiGRU)中学习特征之间的变化规律,设计并引入了新的混合注意力机制(HAM),充分考虑变量之间的关系,对重要特征信息赋予更大的权重,同时抑制冗余信息的影响;然后进行非线性变换,获得RUL预测结果;最后使用粒子群优化算法对神经网络的超参数进行调优。采用美国航天局NASA研究中心提供的涡轮发动机模拟数据集验证所提网络模型的有效性。结果表明:对于多工况运行条件,所提方法的均方根误差相比于CNN、LSTM、BiLSTM、CNN-LSTM分别降低了49.2%、37.1%、33.6%、24.8%,有效提升了模型的预测精度。 展开更多
关键词 多工况聚类 卷积神经网络(CNN) 双向门控循环神经网络 混合注意力机制(HAM) 粒子群优化算法
在线阅读 下载PDF
Bacterial graphical user interface oriented by particle swarm optimization strategy for optimization of multiple type DFACTS for power quality enhancement in distribution system 被引量:3
20
作者 M.Mohammadi M.Montazeri S.Abasi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期569-588,共20页
This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution syste... This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution systems.The proposed GUI based toolbox,allows the user to choose between single and multiple DFACTS allocations,followed by the type and number of them to be allocated.The EBFO is then applied to obtain optimal locations and ratings of the single and multiple DFACTS.This is found to be faster and provides more accurate results compared to the usual PSO and BFO.Results obtained with MATLAB/Simulink simulations are compared with PSO,BFO and enhanced BFO.It reveals that enhanced BFO shows quick convergence to reach the desired solution there by yielding superior solution quality.Simulation results concluded that the EBFO based multiple DFACTS allocation using DSSSC,APC and DSTATCOM is preferable to reduce power losses,improve load balancing and enhance voltage deviation index to 70%,38% and 132% respectively and also it can improve loading factor without additional power loss. 展开更多
关键词 distribution system power quality single type and multiple type DFACTS BFO algorithm particle swarm optimization(PSO)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部