针对污秽绝缘子红外热像特征数据具有多重相关性的特点,提出基于PLS(Partial Least Squares,PLS)回归分析的高压绝缘子污秽等级判定方法。在最大限度保留原有数据信息的前提下,建立起高压绝缘子污秽特征量与污秽等级之间的PLS回归模型方...针对污秽绝缘子红外热像特征数据具有多重相关性的特点,提出基于PLS(Partial Least Squares,PLS)回归分析的高压绝缘子污秽等级判定方法。在最大限度保留原有数据信息的前提下,建立起高压绝缘子污秽特征量与污秽等级之间的PLS回归模型方程,通过对回归模型方程进行变量投影重要性指标分析,可以得到各个特征量对污秽等级判定结果的影响程度。此方法有效解决了自变量之间的多重相关性问题,量化了污秽特征量与污秽等级之间的关系。测试结果表明,将PLS回归分析应用于高压绝缘子污秽等级的判定,科学可靠,准确率高,具有较强的实用性。展开更多
为改进小麦冠层含氮率的高光谱测定模型,以正交试验筛选出小波去噪的最优参数组合(小波类型取haar,分解层数为5,阈值方案选择Fixed form threshold,噪声结构定为Unscaled white noise),并利用去噪后的小麦冠层光谱建立偏最小二乘回归(P...为改进小麦冠层含氮率的高光谱测定模型,以正交试验筛选出小波去噪的最优参数组合(小波类型取haar,分解层数为5,阈值方案选择Fixed form threshold,噪声结构定为Unscaled white noise),并利用去噪后的小麦冠层光谱建立偏最小二乘回归(PLS)模型,对不同预处理方法进行比较分析。发现采用小波去噪结合一阶导数能最有效消除原始光谱的背景信息,此时PLS模型校正集均方根误差(RMSEC)为0.260,预测集均方根误差(RMSEP)为0.288。对经一阶导数结合小波去噪后的光谱用主成分分析(PCA)进行降维,以前6个主成份为输入变量,建立最小二乘支撑向量机回归模型(LS-SVR),其RMSEC与RMSEP分别为0.154与0.259,具有比PLS模型更高的精度。结果表明:以小波去噪结合一阶导数去除小麦冠层反射光谱中的土壤背景信息以提高模型的精度是可行的,且LS-SVR是建模的优选方法。展开更多
文摘针对污秽绝缘子红外热像特征数据具有多重相关性的特点,提出基于PLS(Partial Least Squares,PLS)回归分析的高压绝缘子污秽等级判定方法。在最大限度保留原有数据信息的前提下,建立起高压绝缘子污秽特征量与污秽等级之间的PLS回归模型方程,通过对回归模型方程进行变量投影重要性指标分析,可以得到各个特征量对污秽等级判定结果的影响程度。此方法有效解决了自变量之间的多重相关性问题,量化了污秽特征量与污秽等级之间的关系。测试结果表明,将PLS回归分析应用于高压绝缘子污秽等级的判定,科学可靠,准确率高,具有较强的实用性。
文摘为改进小麦冠层含氮率的高光谱测定模型,以正交试验筛选出小波去噪的最优参数组合(小波类型取haar,分解层数为5,阈值方案选择Fixed form threshold,噪声结构定为Unscaled white noise),并利用去噪后的小麦冠层光谱建立偏最小二乘回归(PLS)模型,对不同预处理方法进行比较分析。发现采用小波去噪结合一阶导数能最有效消除原始光谱的背景信息,此时PLS模型校正集均方根误差(RMSEC)为0.260,预测集均方根误差(RMSEP)为0.288。对经一阶导数结合小波去噪后的光谱用主成分分析(PCA)进行降维,以前6个主成份为输入变量,建立最小二乘支撑向量机回归模型(LS-SVR),其RMSEC与RMSEP分别为0.154与0.259,具有比PLS模型更高的精度。结果表明:以小波去噪结合一阶导数去除小麦冠层反射光谱中的土壤背景信息以提高模型的精度是可行的,且LS-SVR是建模的优选方法。