在参数激励与强迫激励联合作用下具有van der Pol阻尼的非线性振动系统,其动态行为是非常复杂的.本文利用Melnikov方法研究了这类系统的异宿轨道分叉、次谐分叉和混沌.对于各种不同的共振情况,系统将经过无限次奇阶次谐分叉产生Smale马...在参数激励与强迫激励联合作用下具有van der Pol阻尼的非线性振动系统,其动态行为是非常复杂的.本文利用Melnikov方法研究了这类系统的异宿轨道分叉、次谐分叉和混沌.对于各种不同的共振情况,系统将经过无限次奇阶次谐分叉产生Smale马蹄而进入混沌状态.最后我们利用数值计算方法研究了这类系统的混沌运动.所得结果揭示了一些新的现象.展开更多
应用多尺度法分析了 van der Pol系统受参数激励和多频强迫激励联合作用下的主参数 -组合共振 ,求得了稳态响应的分岔方程 ,应用奇异性理论进行分析 ,得到了系统稳态响应的转迁集和分岔图 ,并分析了原系统参数对普适开折参数的影响。研...应用多尺度法分析了 van der Pol系统受参数激励和多频强迫激励联合作用下的主参数 -组合共振 ,求得了稳态响应的分岔方程 ,应用奇异性理论进行分析 ,得到了系统稳态响应的转迁集和分岔图 ,并分析了原系统参数对普适开折参数的影响。研究表明 ,该系统的稳态响应为一叉型分岔 ,激励幅值 F1 ,F2 和阻尼 μ对普适开折参数的影响很大 ,通过调整 F1 ,F2 和 μ可以很方便地控制解的分岔特性。展开更多
文摘在参数激励与强迫激励联合作用下具有van der Pol阻尼的非线性振动系统,其动态行为是非常复杂的.本文利用Melnikov方法研究了这类系统的异宿轨道分叉、次谐分叉和混沌.对于各种不同的共振情况,系统将经过无限次奇阶次谐分叉产生Smale马蹄而进入混沌状态.最后我们利用数值计算方法研究了这类系统的混沌运动.所得结果揭示了一些新的现象.
文摘应用多尺度法分析了 van der Pol系统受参数激励和多频强迫激励联合作用下的主参数 -组合共振 ,求得了稳态响应的分岔方程 ,应用奇异性理论进行分析 ,得到了系统稳态响应的转迁集和分岔图 ,并分析了原系统参数对普适开折参数的影响。研究表明 ,该系统的稳态响应为一叉型分岔 ,激励幅值 F1 ,F2 和阻尼 μ对普适开折参数的影响很大 ,通过调整 F1 ,F2 和 μ可以很方便地控制解的分岔特性。