期刊文献+
共找到146,844篇文章
< 1 2 250 >
每页显示 20 50 100
基于IPSO-VMD联合小波阈值的超低空磁异常信号去噪方法
1
作者 杨帆 徐春雨 李肃义 《电子测量与仪器学报》 北大核心 2025年第6期204-211,共8页
变分模态分解(VMD)方法在超低空磁异常信号去噪中具有较好的模态分解效果,然而在实际探测中需要依赖人工设定惩罚因子和模态分解参数,且磁异常信号微弱、环境噪声复杂。针对上述问题,提出了一种改进的粒子群优化变分模态分解(IPSO-VMD)... 变分模态分解(VMD)方法在超低空磁异常信号去噪中具有较好的模态分解效果,然而在实际探测中需要依赖人工设定惩罚因子和模态分解参数,且磁异常信号微弱、环境噪声复杂。针对上述问题,提出了一种改进的粒子群优化变分模态分解(IPSO-VMD)联合小波阈值的去噪方法。首先,通过引入自适应惯性权重和学习因子策略,利用排列熵作为自适应函数,实现了对上述参数自适应。之后,采用最优参数组合对信号进行分解,并对异常分量应用小波阈值去噪处理。最终,将信号重构并获得去噪后的信号。仿真实验结果表明,该方法相比其他方法将信噪比提升了约9.44 dB,相关系数达到约0.74,获得了良好的去噪效果。通过野外实验表明,去噪后的实测信号磁异常位置明显,有效降低了环境噪声对信号的干扰,显示出在野外超低空磁目标勘探中的应用潜力。 展开更多
关键词 超低空磁异常探测 改进粒子群优化(ipso) 变分模态分解(VMD) 参数自适应 小波阈值
在线阅读 下载PDF
IPSO-Stacking双驱动集成学习自适应模型的致密砂岩储层渗透率预测
2
作者 陈雪菲 辛显康 喻高明 《石油物探》 北大核心 2025年第5期946-956,共11页
传统的致密砂岩储层渗透率预测通常采用物理模型与拟合模型,物理模型难以获取精准的物理参数,纯数据驱动的拟合模型对非均质性较强的储层渗透率的预测准确性较差。为此,从耦合物理模型和机器学习拟合模型入手,首先引入Stacking集成学习... 传统的致密砂岩储层渗透率预测通常采用物理模型与拟合模型,物理模型难以获取精准的物理参数,纯数据驱动的拟合模型对非均质性较强的储层渗透率的预测准确性较差。为此,从耦合物理模型和机器学习拟合模型入手,首先引入Stacking集成学习模型预测储层流动单元指数(FZI),并结合Kozeny-Carman模型以及离散岩石类型(DRT)对储层进行划分,然后使用改进的粒子群优化(IPSO)算法对物理模型和机器学习拟合模型的参数同步进行动态优化,得到IPSO-Stacking双驱动集成学习自适应模型(简称IPSO-Stacking模型),利用江汉WG油田的测井数据测试IPSO-Stacking模型对致密砂岩储层的渗透率预测的能力。试验结果表明:利用由耦合物理模型与机器学习拟合模型得到的IPSO-Stacking模型预测的FZI准确度达到98%,预测的渗透率准确度为93%,证明了IPSO-Stacking模型较强的预测能力;IPSO算法较传统元启发式优化算法能更有效地调整物理模型和机器学习模型的参数;利用IPSO算法进行迭代,得到的DRT经验系数更具适应性。IPSO-Stacking模型通过物理与数据驱动的协同优化,实现了致密砂岩储层渗透率的高精度预测。 展开更多
关键词 渗透率 耦合 离散岩石类型 流动单元指数 改进的粒子群优化 集成学习
在线阅读 下载PDF
基于IBAS-IPSO算法的交直流混合微网运行优化
3
作者 潘鹏程 荣梦杰 +1 位作者 香静 徐恒山 《电力系统及其自动化学报》 北大核心 2025年第10期75-84,共10页
针对交直流混合微网多目标运行优化模型目标函数具有多样、约束条件复杂及采用粒子群优化算法时存在搜索效率低、易陷入局部最优的问题,提出一种将改进粒子群优化算法和改进天牛须搜索算法融合的双重搜索优化算法。首先,基于粒子群优化... 针对交直流混合微网多目标运行优化模型目标函数具有多样、约束条件复杂及采用粒子群优化算法时存在搜索效率低、易陷入局部最优的问题,提出一种将改进粒子群优化算法和改进天牛须搜索算法融合的双重搜索优化算法。首先,基于粒子群优化算法,引入动态自适应参数改变惯性权重因子和学习因子;然后,为提高粒子群优化算法的收敛精度,对天牛须搜索算法采用动态步长搜索机制;最后,以经济性和环保性为目标,采用本文算法对交直流混合微网运行进行优化。优化结果表明,本文算法与其他算法相比得到的运行成本和环保成本更低,运行时间更短,有一定的工程应用价值。 展开更多
关键词 交直流混合微网 经济性 环保性 改进粒子群优化算法 改进天牛须搜索算法 运行优化
在线阅读 下载PDF
基于IPSO⁃BP的消防通信指挥系统效能评价
4
作者 于振江 《中国安全科学学报》 北大核心 2025年第9期1-7,共7页
为实现消防通信指挥系统的现状研判与迭代升级的量化支撑,基于消防通信指挥系统设计规范,从业务支撑能力、数据服务能力、通信保障能力3个方面构建支队级消防指挥通信系统4级效能评价指标体系;在反向传播(BP)神经网络算法的基础上,通过... 为实现消防通信指挥系统的现状研判与迭代升级的量化支撑,基于消防通信指挥系统设计规范,从业务支撑能力、数据服务能力、通信保障能力3个方面构建支队级消防指挥通信系统4级效能评价指标体系;在反向传播(BP)神经网络算法的基础上,通过改进粒子群优化(IPSO)算法优化参数,提出基于IPSO-BP的系统效能评价方法;采用专家打分与层次分析法(AHP)结合的方式获取样本数据,经主成分分析(PCA)方法降维后,分别基于BP神经网络、PSO-BP神经网络、IPSO-BP神经网络这3个模型开展仿真对比。结果表明:IPSO-BP神经网络模型的收敛速度最快,其均方误差相比于BP神经网络模型降低了75.71%,相较于PSO-BP神经网络模型降低了45.96%,为三者中的最小值;IPSO-BP模型能够合理精准地评价支队级消防通信指挥系统效能,具有一定的普适性。 展开更多
关键词 消防通信指挥系统 效能评价 反向传播(BP)神经网络 改进粒子群优化(ipso) 指标体系
在线阅读 下载PDF
考虑IPSO优化的CNN-LSTM盾构掘进参数混合预测模型 被引量:1
5
作者 朱仔旭 施成华 +4 位作者 陈海勇 雷明锋 王祖贤 张明书 周天顺 《铁道科学与工程学报》 北大核心 2025年第6期2690-2702,共13页
为辅助盾构机设备操作人员提前预测获知前方掘进参数变化,减小经验预判诱发盾构事故风险,进一步提升盾构机智能化掘进和自动化作业水平,以武汉市轨道交通12号线越江隧道泥水盾构掘进监测数据为依托,建立基于卷积神经网络(convolutional ... 为辅助盾构机设备操作人员提前预测获知前方掘进参数变化,减小经验预判诱发盾构事故风险,进一步提升盾构机智能化掘进和自动化作业水平,以武汉市轨道交通12号线越江隧道泥水盾构掘进监测数据为依托,建立基于卷积神经网络(convolutional neural network, CNN)-长短期记忆人工网络(long short-term memory, LSTM)的混合模型。提出一种改进的粒子群优化算法(improved particle swarm optimization, IPSO)自主优化混合预测模型的超参数,并以历史机-地耦合状态指标为输入,未来掘进参数为输出,实现了盾构掘进参数(刀盘转速、推进速度、总推进力和刀盘扭矩)的预测。研究结果表明,IPSO算法能够有效抑制超参数寻优早熟收敛,经过梯度优化迭代过程后能够取得CNN-LSTM混合模型的全局最优超参数,适应度寻优幅度较PSO算法提升223.281%。混合预测模型超参数优化后的预测误差更接近于0误差线上下振荡,4种掘进参数的平均绝对百分比误差Fmape分别由4.069%、38.004%、4.482%和10.618%降低至1.406%、6.246%、1.533%和4.465%,预测精度普遍提高2倍以上,误差波形也更加平稳。IPSO-CNN-LSTM混合模型预测具备较高的精度和跟随性,在一些峰值错动比较大的位置都具有较好的表现,掘进参数的综合预测精度均能达到95%以上,决定系数R2保持在0.9以上,预测值和目标值具有较高的线性相关性,所提出的模型能够为实际工程掘进参数预测提供指导,进一步提升盾构掘进智能建造水平。 展开更多
关键词 泥水盾构 掘进参数 神经网络 智能预测 超参数优化
在线阅读 下载PDF
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
6
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
Max-Min Security Rate Optimization in STAR-RIS Aided Secure MIMO Systems
7
作者 HUANG Jinhao MIAO Ling +1 位作者 SUO Long ZHOU Wen 《电讯技术》 北大核心 2025年第10期1657-1664,共8页
The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-inpu... The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems. 展开更多
关键词 multiple-input multiple-output(MIMO) reflecting reconfigurable intelligent surface(STAR-RIS) particle swarm optimization(PSO) max-min security rate optimization
在线阅读 下载PDF
A high output power 340 GHz balanced frequency doubler designed based on linear optimization method
8
作者 LIU Zhi-Cheng ZHOU Jing-Tao +5 位作者 MENG Jin WEI Hao-Miao YANG Cheng-Yue SU Yong-Bo JIN Zhi JIA Rui 《红外与毫米波学报》 北大核心 2025年第2期184-191,共8页
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ... In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%. 展开更多
关键词 linear optimization method(LOM) three-dimensional electromagnetic model(3D-EM) Harmonic impedance optimization Schottky planar diode Terahertz frequency doubler
在线阅读 下载PDF
基于IPSO-PF算法的疲劳裂纹扩展预测
9
作者 靳婷 王晓磊 +1 位作者 刘宇 袁建明 《机械强度》 北大核心 2025年第4期47-53,共7页
传统Paris公式预测裂纹扩展时忽略了裂纹扩展过程中各种不确定因素的影响,导致预测的裂纹扩展过程与真实的裂纹扩展过程相差较大。为提高疲劳裂纹扩展预测的精度,提出了一种基于改进粒子群优化粒子滤波(Improved Particle Swarm Optimiz... 传统Paris公式预测裂纹扩展时忽略了裂纹扩展过程中各种不确定因素的影响,导致预测的裂纹扩展过程与真实的裂纹扩展过程相差较大。为提高疲劳裂纹扩展预测的精度,提出了一种基于改进粒子群优化粒子滤波(Improved Particle Swarm Optimization-Particle Filtering,IPSO-PF)算法的疲劳裂纹扩展预测方法。首先,在粒子滤波(Particle Filtering,PF)算法的框架上,利用粒子群优化(Particle Swarm Optimization,PSO)算法对基于观测信息更新后的部分粒子进行优化,保持大权值的粒子状态不变,将小权值的粒子趋向于高似然区域,设计了IPSO-PF算法;然后,将IPSO-PF算法与Paris公式结合,构建了基于Paris公式和IPSO-PF算法的疲劳裂纹扩展预测模型;最后,使用公开的2024-T351铝合金数据集对该模型的有效性进行了验证。结果表明,与传统PF算法相比,IPSO-PF算法能够提高粒子的多样性,使用IPSO-PF算法构建的裂纹扩展预测模型的预测误差为2.6%,优于基于PF算法的9.2%。 展开更多
关键词 疲劳裂纹 裂纹扩展预测 粒子滤波 粒子群优化 算法优化
在线阅读 下载PDF
基于AIPSO的传感器网络动态节点部署策略 被引量:1
10
作者 俞垚魏 李云龙 +2 位作者 岳川 袁伟 李艳峰 《传感技术学报》 北大核心 2025年第2期322-331,共10页
利用传感器网络对任务区域进行监测是保障区域安全稳定的重要手段。多传感器组建的覆盖网络可为区域提供高效的感知和通信服务。理想的传感器部署策略是实现网络覆盖最大化的必要条件。当部分固定传感器功能失效导致监测区域出现覆盖空... 利用传感器网络对任务区域进行监测是保障区域安全稳定的重要手段。多传感器组建的覆盖网络可为区域提供高效的感知和通信服务。理想的传感器部署策略是实现网络覆盖最大化的必要条件。当部分固定传感器功能失效导致监测区域出现覆盖空洞,可以通过调整周围可移动传感器实施快速修复。首先建立了传感器网络节点部署模型。其次,针对传感器网络节点部署特征,提出了基于人工免疫机制的粒子群优化算法(Artificial Immune-based Particle Swarm Optimization,AIPSO),提高了种群的多样性,解决了传统优化算法中容易出现的早熟收敛和局部最优值问题,提升了节点部署效率。仿真结果表明,与传统粒子群算法(Particle Swarm Optimization,PSO)、基于量子行为的粒子群优化算法(Quantum Particle Swarm Optimization,QPSO)以及改进的免疫粒子群算法(Improved Immune Particle Swarm Optimization,IIPSO)相比,AIPSO算法从整体上减少了动态传感器的移动距离,同时能够最大程度地保持传感器网络的覆盖率和节点覆盖效率。 展开更多
关键词 传感器网络 动态节点 部署策略 人工免疫 粒子群优化
在线阅读 下载PDF
A Modified PRP-HS Hybrid Conjugate Gradient Algorithm for Solving Unconstrained Optimization Problems
11
作者 LI Xiangli WANG Zhiling LI Binglan 《应用数学》 北大核心 2025年第2期553-564,共12页
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien... In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient. 展开更多
关键词 Conjugate gradient method Unconstrained optimization Sufficient descent condition Global convergence
在线阅读 下载PDF
Energy Efficiency Operating Indicator Forecasting and Speed Design Optimization for Polar Ice Class Merchant Vessels
12
作者 LU Yu LI Chen−ran +3 位作者 ZHU Xiang−hang LI Shi−an GU Zhu−hao LIU She−wen 《船舶力学》 北大核心 2025年第6期901-911,共11页
In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p... In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t. 展开更多
关键词 Energy Efficiency Operational Indicator ice-class ships segment division design optimization
在线阅读 下载PDF
Design and optimization of quadrupole and sextupole magnets for Shenzhen Innovation Light-source Facility storage ring
13
作者 Zhu Jiawu Zhang Miao Wang Yong 《强激光与粒子束》 北大核心 2025年第7期83-90,共8页
As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude redu... As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude reduction in beam emittance compared to the 3^(rd) generation storage ring.This significantly enhance the radiation brightness and coherence.The multipole magnets of many types for SILF storage ring are under preliminary design,which require high integral field homogeneity.As a result,a dedicated pole tip optimization procedure with high efficiency is developed for quadrupole and sextupole magnets with Opera-2D^(■)python script.The procedure considers also the 3D field effect which makes the optimization more straightforward.In this paper,the design of the quadrupole and sextupole magnets for SILF storage ring is first presented,followed by a detailed description of the implemented pole shape optimization method. 展开更多
关键词 synchrotron radiation facility quadrupole magnet sextupole magnet pole shape optimization
在线阅读 下载PDF
Some studies on stochastic optimization based quantitative risk management
14
作者 HU Zhaolin 《运筹学学报(中英文)》 北大核心 2025年第3期135-159,共25页
Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical... Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems. 展开更多
关键词 stochastic optimization quantitative risk management risk measure computing technique statistical property
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
15
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
在线阅读 下载PDF
结合注意力机制和IPSO的石油化工过程变量预测方法
16
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升树 改进粒子群优化算法
在线阅读 下载PDF
Multi-objective optimization of top-level arrangement for flight test
17
作者 WANG Yunong BI Wenhao +2 位作者 FAN Qiucen XU Shuangfei ZHANG An 《Journal of Systems Engineering and Electronics》 2025年第3期714-724,共11页
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig... The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test. 展开更多
关键词 flight test top-level arrangement flight test optimization multi-objective optimization
在线阅读 下载PDF
Layout configuration and joint scheduling optimization of green-grey-blue integrated system for urban stormwater management:Current status and future directions
18
作者 DUAN Tingting LI Pengfeng +4 位作者 KHU Soonthiam HUANG Peng TIAN Tengfei LIU Qian ZHANG Yuting 《水利水电技术(中英文)》 北大核心 2025年第7期77-108,共32页
[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infra... [Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events. 展开更多
关键词 excessive rainfall runoff green-grey-blue integrated system emergency response intelligent control optimization framework multi-departmental collaboration climate change flood
在线阅读 下载PDF
Look-ahead horizon-based energy optimization with traffic prediction for connected HEVs
19
作者 XU Fu-guo SHEN Tie-long 《控制理论与应用》 北大核心 2025年第8期1534-1542,共9页
With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec... With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed. 展开更多
关键词 look-ahead horizon connected and automated vehicle(CAV) hybrid electric vehicle(HEV) energy efficiency optimization traffic prediction
在线阅读 下载PDF
Topological optimization of metamaterial absorber based on improved estimation of distribution algorithm
20
作者 TAO Shifei LIU Beichen +2 位作者 LIU Sixing WU Fan WANG Hao 《Journal of Systems Engineering and Electronics》 2025年第3期634-641,共8页
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa... An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm. 展开更多
关键词 METAMATERIAL topological optimization estimation of distribution algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部