为了应对海量分布式资源分层分布接入柔性配电网给无功优化引入的不确定性,提出了基于概率场景驱动的柔性配电网分布式无功优化方法。首先,以最小化系统损耗为目标建立了柔性配电网无功优化模型,其次,综合考虑1-范数和∞-范数的置信约束...为了应对海量分布式资源分层分布接入柔性配电网给无功优化引入的不确定性,提出了基于概率场景驱动的柔性配电网分布式无功优化方法。首先,以最小化系统损耗为目标建立了柔性配电网无功优化模型,其次,综合考虑1-范数和∞-范数的置信约束,构建基于概率场景模糊集的柔性配电网分布鲁棒无功优化模型。在此基础上,以分布式优化模型为外部框架,采用一致性加速梯度交替方向乘子法(alternating direction method of multipliers,ADMM)进行全局协调与更新迭代求解,以各子区域分布鲁棒优化模型为内部框架,采用列与约束生成(column and constraint generation,CCG)算法求解。基于改进的IEEE-33节点系统的算例仿真结果表明,所提出的柔性配电网分布式无功优化方法具有较好的收敛性,兼顾了经济性和鲁棒性的平衡。展开更多
基于交替方向乘子法(ADMM)在分布式形式下解决主动配电系统最优潮流问题(OPF),针对分布式算法性能受到配电系统区域划分影响的问题,提出了一种基于量测数据驱动的电网分区方法,以加速优化算法的收敛速度。与传统的ADMM算法依赖于全局信...基于交替方向乘子法(ADMM)在分布式形式下解决主动配电系统最优潮流问题(OPF),针对分布式算法性能受到配电系统区域划分影响的问题,提出了一种基于量测数据驱动的电网分区方法,以加速优化算法的收敛速度。与传统的ADMM算法依赖于全局信息不同,本文引入了一致性方法来协调区域交界的平衡问题,从而实现最优潮流问题的完全分布式求解。此外,本文采用LinDistFlow(Linearized Distribution Flow)交流近似模型来应对配电网最优潮流问题的非凸性挑战。通过在不同规模的IEEE配电网案例上进行测试,验证了所提方法的有效性,且其在优化算法的迭代次数、计算时间和误差精度等性能上均优于其他分区方法。展开更多
文摘为了应对海量分布式资源分层分布接入柔性配电网给无功优化引入的不确定性,提出了基于概率场景驱动的柔性配电网分布式无功优化方法。首先,以最小化系统损耗为目标建立了柔性配电网无功优化模型,其次,综合考虑1-范数和∞-范数的置信约束,构建基于概率场景模糊集的柔性配电网分布鲁棒无功优化模型。在此基础上,以分布式优化模型为外部框架,采用一致性加速梯度交替方向乘子法(alternating direction method of multipliers,ADMM)进行全局协调与更新迭代求解,以各子区域分布鲁棒优化模型为内部框架,采用列与约束生成(column and constraint generation,CCG)算法求解。基于改进的IEEE-33节点系统的算例仿真结果表明,所提出的柔性配电网分布式无功优化方法具有较好的收敛性,兼顾了经济性和鲁棒性的平衡。
文摘基于交替方向乘子法(ADMM)在分布式形式下解决主动配电系统最优潮流问题(OPF),针对分布式算法性能受到配电系统区域划分影响的问题,提出了一种基于量测数据驱动的电网分区方法,以加速优化算法的收敛速度。与传统的ADMM算法依赖于全局信息不同,本文引入了一致性方法来协调区域交界的平衡问题,从而实现最优潮流问题的完全分布式求解。此外,本文采用LinDistFlow(Linearized Distribution Flow)交流近似模型来应对配电网最优潮流问题的非凸性挑战。通过在不同规模的IEEE配电网案例上进行测试,验证了所提方法的有效性,且其在优化算法的迭代次数、计算时间和误差精度等性能上均优于其他分区方法。