期刊文献+
共找到158篇文章
< 1 2 8 >
每页显示 20 50 100
Reconstruction of pile-up events using a one-dimensional convolutional autoencoder for the NEDA detector array
1
作者 J.M.Deltoro G.Jaworski +15 位作者 A.Goasduff V.González A.Gadea M.Palacz J.J.Valiente-Dobón J.Nyberg S.Casans A.E.Navarro-Antón E.Sanchis G.de Angelis A.Boujrad S.Coudert T.Dupasquier S.Ertürk O.Stezowski R.Wadsworth 《Nuclear Science and Techniques》 2025年第2期62-70,共9页
Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have ... Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals. 展开更多
关键词 1D-CAE Autoencoder CAE convolutional neural network(CNN) Neutron detector Neutron-gamma discrimination(NGD) Machine learning Pulse shape discrimination Pile-up pulse
在线阅读 下载PDF
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:4
2
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1D-CNN) time series prediction state parameters
在线阅读 下载PDF
基于1DCNN特征提取和RF分类的滚动轴承故障诊断
3
作者 张豪 刘其洪 +1 位作者 李伟光 李漾 《中国测试》 北大核心 2025年第4期137-143,共7页
针对深度学习技术在滚动轴承故障诊断识别中依赖于大量测量数据,相对较少的数据可能会导致过度拟合并降低模型的稳定性等问题,提出一种一维卷积神经网络(1DCNN)和随机森林(RF)相结合的轴承故障诊断模型。将原始时域信号输入搭建的1DCNN... 针对深度学习技术在滚动轴承故障诊断识别中依赖于大量测量数据,相对较少的数据可能会导致过度拟合并降低模型的稳定性等问题,提出一种一维卷积神经网络(1DCNN)和随机森林(RF)相结合的轴承故障诊断模型。将原始时域信号输入搭建的1DCNN网络中,提取原始数据特征向量,对特征向量进行t-SNE降维可视化,验证1DCNN特征提取的有效性。将特征向量输入随机森林实现故障状态识别,解决小样本的滚动轴承故障分类问题。在CWRU数据集和Paderborn数据集上进行实验,针对不同类型、不同损伤程度的轴承,得到分类结果准确率分别达到99.69%和99.16%。与传统的神经网络和机器学习分类模型相比,1DCNN-RF模型具有更高的诊断准确率,可验证所提模型的泛化性和有效性。 展开更多
关键词 滚动轴承 故障诊断 一维卷积神经网络 随机森林
在线阅读 下载PDF
Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
4
作者 童霈文 徐晖 +5 位作者 孙毅 汪泳州 彭杰 廖岑 王伟 李清江 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期582-590,共9页
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ... Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency. 展开更多
关键词 MEMRISTOR LIGHTWEIGHT ROBUST hybrid neural networks depthwise separable convolution bidirectional gate recurrent unit(BiGRU) one-transistor one-resistor(1T1R)arrays
在线阅读 下载PDF
电子鼻和电子舌结合LSTM-AM-M1DCNN检测枸杞产地
5
作者 马泽亮 刘雅倩 +3 位作者 程琦峰 王萍萍 杨甜星 杜岗 《食品与机械》 CSCD 北大核心 2024年第12期51-58,共8页
[目的]实现枸杞产地的快速检测。[方法]提出了一种基于电子鼻和电子舌的长短期记忆网络—注意力机制—多尺度一维卷积神经网络(LSTM-AM-M1DCNN)模型的枸杞产地快速判别方法。采用电子鼻和电子舌分别对5种不同产地的枸杞进行检测,将采集... [目的]实现枸杞产地的快速检测。[方法]提出了一种基于电子鼻和电子舌的长短期记忆网络—注意力机制—多尺度一维卷积神经网络(LSTM-AM-M1DCNN)模型的枸杞产地快速判别方法。采用电子鼻和电子舌分别对5种不同产地的枸杞进行检测,将采集回来的信息进行融合,并采用LSTM-AM-M1DCNN对融合后的数据进行分类判别。[结果]相比于传统的LSTM、CNN方法,LSTM-AM-M1DCNN能够有效提取到电子鼻和电子舌数据中深层特征信息,其测试集准确率、精确率、召回率、F_(1)-Score分别为97.4%,97.6%,97.4%,0.974。[结论]采用LSTM-AM-M1DCNN解决了传统卷积神经网络无法充分提取时序、时空特征的缺陷,适合对电子鼻和电子舌采集到的数据进行处理,可有效判别枸杞产地。 展开更多
关键词 枸杞 产地 电子鼻 电子舌 长短期记忆网络 多尺度一维卷积神经网络
在线阅读 下载PDF
基于RIME和1DCNN-LSTM-Attention的无创血糖预测模型研究
6
作者 贺义博 靳鸿 +1 位作者 周春 屈盛玉 《现代电子技术》 北大核心 2024年第18期83-88,共6页
实现无创血糖检测对于糖尿病患者来说具有重要意义,然而目前市面上的无创血糖仪存在检测精度不高的问题。为了提高无创血糖检测的准确度,基于近红外无创血糖检测仪,构建了1DCNN-LSTM-Attention混合预测模型,同时引入了霜冰优化算法(RIME... 实现无创血糖检测对于糖尿病患者来说具有重要意义,然而目前市面上的无创血糖仪存在检测精度不高的问题。为了提高无创血糖检测的准确度,基于近红外无创血糖检测仪,构建了1DCNN-LSTM-Attention混合预测模型,同时引入了霜冰优化算法(RIME)。该模型通过一维卷积神经网络(1DCNN)提取数据中的局部特征,将所提取的特征向量作为长短期记忆(LSTM)网络的输入,捕捉数据中的依赖关系;采用注意力机制(Attention)为LSTM的输出赋予不同的权重,增强关键信息提取;通过RIME算法优化模型参数,避免陷入局部最优解。结果表明,引入RIME的1DCNN-LSTM-Attention混合模型预测效果优于1DCNN、LSTM、1DCNN-LSTM、1DCNN-LSTM-Attention等模型,预测血糖值与有创血糖值的平均绝对误差为0.121 0,均方误差为0.018 6,相关系数达到了0.982 3。该模型有助于提高近红外无创血糖检测的精确度和可靠性。 展开更多
关键词 近红外无创血糖检测 一维卷积神经网络 霜冰优化算法 长短期记忆网络 注意力机制 参数优化
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测
7
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
基于1D-ResNet的沥青混合料光谱分类识别方法
8
作者 王晋军 周兴林 《现代电子技术》 北大核心 2025年第8期139-144,共6页
使用近红外光谱技术对沥青混合料的老化程度进行快速有效评估,对于沥青道路养护具有重要意义。为了实现不同老化程度沥青混合料的快速准确分类,提出一种基于一维残差卷积神经网络(1D-ResNet)的沥青混合料光谱分类方法。该方法是在卷积... 使用近红外光谱技术对沥青混合料的老化程度进行快速有效评估,对于沥青道路养护具有重要意义。为了实现不同老化程度沥青混合料的快速准确分类,提出一种基于一维残差卷积神经网络(1D-ResNet)的沥青混合料光谱分类方法。该方法是在卷积神经网络链式结构的基础上引入残差模块来构建1D-ResNet分类模型。首先对近红外光谱数据间隔平均,并进行二阶导数(2nd D)及标准正态变量变换(SNV)预处理;然后将归一化的平均光谱、2nd D光谱及SNV光谱进行光谱序列融合;最后将融合光谱数据作为模型的输入,实现对不同老化程度沥青混合料的分类。实验结果表明:对光谱数据进行间隔平均后,1D-ResNet模型分类准确率为88.38%,采用光谱序列融合后分类准确率达98.86%,能够实现对沥青混合料的准确分类识别。 展开更多
关键词 沥青混合料 光谱分类 一维残差卷积神经网络 光谱预处理 序列融合 间隔平均法
在线阅读 下载PDF
基于1DCNN-LSTM和迁移学习的短期电力负荷预测 被引量:3
9
作者 姜建国 万成德 +2 位作者 陈鹏 郭晓丽 佟麟阁 《吉林大学学报(信息科学版)》 CAS 2023年第1期124-130,共7页
针对在短期电力负荷预测中,当某区域电力负荷数据较少时,负荷预测精度较差的问题,提出一种基于1DCNN-LSTM(1D Convolutional Neural-Long Short-Term Memory Networks)和参数迁移的短期负荷预测方法,并采用1DCNN-LSTM结合迁移学习针对... 针对在短期电力负荷预测中,当某区域电力负荷数据较少时,负荷预测精度较差的问题,提出一种基于1DCNN-LSTM(1D Convolutional Neural-Long Short-Term Memory Networks)和参数迁移的短期负荷预测方法,并采用1DCNN-LSTM结合迁移学习针对性提高预测精度。使用美国某地区的实际负荷数据进行仿真分析,实验结果表明,该方法能有效提升区域电力负荷数据缺失时负荷预测的精度。 展开更多
关键词 负荷预测 迁移学习 一维卷积神经网络 长短期记忆网络
在线阅读 下载PDF
一种针对卷积神经网络的特征升维分析方法
10
作者 潘永昊 张苒苒 +2 位作者 于洪涛 黄瑞阳 金柯君 《信息工程大学学报》 2025年第1期44-50,共7页
针对卷积神经网络模型与输入数据紧密耦合的特性导致特征重要性难以区分的问题,提出一种从网络模型的输出结果中分析输入特征重要性的特征升维分析方法。首先,在高维欧氏空间中对输入网络模型的样本特征依次分配一个标准正交基,对输入... 针对卷积神经网络模型与输入数据紧密耦合的特性导致特征重要性难以区分的问题,提出一种从网络模型的输出结果中分析输入特征重要性的特征升维分析方法。首先,在高维欧氏空间中对输入网络模型的样本特征依次分配一个标准正交基,对输入样本特征进行升维表示;其次,在高维欧氏空间中对卷积神经网络进行计算扩展,并对升维表示的特征进行计算;最后,在计算结果中可由标准正交基与输入样本特征的对应关系,分析得出各个输入样本特征在输出结果中的影响权值。实验表明该方法分析得出的权重能够有效反映输入特征对卷积神经网络的影响力。 展开更多
关键词 卷积神经网络 特征升维 权重分析 高维欧式空间
在线阅读 下载PDF
基于DCGAN数据增强的樱桃番茄可溶性固形物含量光谱检测方法
11
作者 吴至境 刘富强 +1 位作者 李志刚 陈慧 《食品科学》 EI CAS 北大核心 2025年第2期214-221,共8页
针对樱桃番茄在实际检测中样品数不足的特点,本研究提出一种深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)模型以同时扩充光谱数据及可溶性固形物含量(soluble solids content,SSC)标签数据,并建立... 针对樱桃番茄在实际检测中样品数不足的特点,本研究提出一种深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)模型以同时扩充光谱数据及可溶性固形物含量(soluble solids content,SSC)标签数据,并建立一维卷积神经网络回归(one dimensional-convolutional neural networks regression,1D-CNNR)模型以提高模型的预测精度和泛化能力。为了比较,分别建立偏最小二乘回归(partial least squares regression,PLSR)模型和支持向量机回归(support vector regression,SVR)模型。将原始80个样品数据集、1000个样品的DCGAN扩充数据集和1080个样品的合并数据集,分别结合1D-CNNR、SVR及PLSR进行建模与预测。为了进一步验证模型的泛化能力,一批新的总数为40个样品的樱桃番茄数据作为上述3个模型的新测试集。结果显示,使用合并数据集划分所得校正集进行1D-CNNR建模后,模型为最优的SSC回归检测模型。此时1D-CNNR面向合并样品测试集的预测准确率最高,预测相关系数r_(p)=0.9807,均方根误差RMSE_(p)=0.1929;与SVR与PLSR对比,1D-CNNR面向新的40个样品数据集的预测准确率也最高,其r_(p)=0.9638,RMSE_(p)=0.2245。本研究可为有效准确检测樱桃番茄的可溶性固形物含量提供一种新思路。 展开更多
关键词 樱桃番茄 可溶性固形物含量 可见-近红外漫反射光谱 深度卷积生成对抗网络 一维卷积神经网络
在线阅读 下载PDF
基于一维残差卷积神经网络的Pi2脉动识别模型
12
作者 张怡悦 邹自明 方少峰 《空间科学学报》 北大核心 2025年第1期66-81,共16页
Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,... Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,如何有效地判断某段地磁场分量观测数据中是否有Pi2脉动发生,是构建Pi2脉动识别模型的关键.利用子午工程磁通门磁力仪观测的地磁场分量数据,基于一维残差卷积神经网络(One-Dimensional Residual Convolutional Neural Network,1D-ResCNN),构建了一个端到端的Pi2脉动识别模型,用于判别某段地磁场分量观测数据中是否有Pi2脉动发生.实验结果表明,该模型与现有公开发表的Pi2脉动机器学习识别模型相比,具有更高的识别准确率和更低的虚报率、漏报率. 展开更多
关键词 Pi2脉动 Pi2脉动识别模型 一维残差卷积神经网络
在线阅读 下载PDF
基于增强Bi-LSTM的船舶运动模型辨识
13
作者 张浩晢 杨智博 +2 位作者 焦绪国 吕成兴 雷鹏 《中国舰船研究》 北大核心 2025年第1期76-84,共9页
[目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提... [目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提取。基于此,设计一维卷积神经网络(1D-CNN)提取序列的空间维度特征。然后,采用多头自注意力机制(MHSA)多角度对序列进行自适应加权处理。利用KVLCC2船舶航行数据,将所提增强Bi-LSTM模型与支持向量机(SVM)、门控循环单元(GRU)、长短期记忆神经网络(LSTM)模型的预测效果进行对比。[结果]所提增强Bi-LSTM模型在测试集中均方根误差(RMSE)、平均绝对误差(MAE)性能指标分别低于0.015和0.011,决定系数(R2)高于0.99913,预测精度显著高于SVM,GRU,LSTM模型。[结论]增强Bi-LSTM模型泛化性能优异,预测稳定性及预测精度高,有效实现了船舶的运动模型辨识。 展开更多
关键词 系统辨识 非参数化建模 一维卷积神经网络 双向长短期记忆神经网络 多头自注意力机制
在线阅读 下载PDF
基于格拉姆角差场和CNN-BiGRU的变压器故障识别法
14
作者 许耀博 杨信强 +2 位作者 徐广超 杨诗豪 段国勇 《电子科技》 2025年第4期73-79,共7页
针对变压器绕组故障特征难以提取、诊断精度较低等问题,文中在频响曲线的基础上提出了一种基于格拉姆角差场(Gramian Angular Difference Field,GADF)和双向门控循环卷积神经网络(Convolutional Neural Network-Bidirectional Gated Rec... 针对变压器绕组故障特征难以提取、诊断精度较低等问题,文中在频响曲线的基础上提出了一种基于格拉姆角差场(Gramian Angular Difference Field,GADF)和双向门控循环卷积神经网络(Convolutional Neural Network-Bidirectional Gated Recurrent Unit,CNN-BiGRU)的变压器故障识别方法。针对原始特征对不同故障类型区分度小的问题,提出了一种移动窗计算法对样本片段进行处理。结合格拉姆角差场变换得到谱特征,将一维数据映射成为三维图像数据。文中分析了不同故障类型在谱特征上的分布特性,将所得谱特征作为输入,通过循环卷积神经网络对故障片段数据进行分类得到识别结果。相较于传统方法,所提方法在特征差异上更明显,准确率得到进一步提高,其对切片分类精度达到了96.2%,验证了该方法的可行性。 展开更多
关键词 变压器 故障诊断 格拉姆角差场 谱特征 深度学习 循环卷积神经网络 高维空间特征
在线阅读 下载PDF
基于1DCNN-BiLSTM的电力电缆故障诊断 被引量:10
15
作者 高超 刘泽辉 +1 位作者 曹栋 姚利娜 《郑州大学学报(工学版)》 CAS 北大核心 2023年第5期86-92,共7页
为了提升电力电缆故障诊断的准确率,解决电缆故障诊断中过程烦琐、效率低、识别精度不高等问题,使其能够在电缆故障发生时准确地诊断出故障类型,提出了一种基于连续卷积神经网络(CNN)和双向长短网络记忆(BiLSTM)的电缆故障检测方法。通... 为了提升电力电缆故障诊断的准确率,解决电缆故障诊断中过程烦琐、效率低、识别精度不高等问题,使其能够在电缆故障发生时准确地诊断出故障类型,提出了一种基于连续卷积神经网络(CNN)和双向长短网络记忆(BiLSTM)的电缆故障检测方法。通过Simulink搭建仿真模型,提取单相接地短路、两相接地短路、两相相间短路、三相短路故障的电压信号,构建故障样本集。将信号输入到该网络模型,一维卷积神经网络提取电缆故障信号的局部特征,双向长短时记忆网络捕捉故障信号时序信息,基于自动提取的特征实现对电缆故障的诊断。经仿真结果验证,该方法能够对电力电缆的4种短路故障进行识别和分类,对单相接地短路故障和三相短路故障分类的正确概率达到97%,对两相接地短路和两相相间短路分类的正确概率达到92%,整体准确率达到98.37%。通过对损失函数曲线、准确率曲线的分析,证明该方法能够取得较好的电缆故障诊断效果。最后使用实际数据进行验证,结果表明该方法具有可行性。 展开更多
关键词 电力电缆 故障诊断 一维卷积神经网络 双向长短时记忆网络 短路
在线阅读 下载PDF
基于PCA-1DCNN的近红外光谱粮食作物主要成分检测方法 被引量:5
16
作者 王蓉 郑恩让 陈蓓 《中国粮油学报》 CSCD 北大核心 2023年第6期141-148,共8页
针对传统的近红外光谱定量技术难以选择合适的光谱预处理方法且模型预测精度低的问题,以3个谷物数据集的近红外光谱数据集为研究对象,构建了基于主成分分析光谱筛选算法的一维卷积神经网络模型。与传统的偏最小二乘回归和支持向量机模... 针对传统的近红外光谱定量技术难以选择合适的光谱预处理方法且模型预测精度低的问题,以3个谷物数据集的近红外光谱数据集为研究对象,构建了基于主成分分析光谱筛选算法的一维卷积神经网络模型。与传统的偏最小二乘回归和支持向量机模型的性能做了对比后,一维卷积神经网络构建的模型性能均为最优。其中在对玉米数据集的水分、油脂、蛋白质、淀粉的定量建模中,模型的决定系数分别为99.09%、98.15%、98.89%、99.60%;在对grain数据集的定量建模中,4种成分模型的决定系数分别为100%、100%、100%、99.99%;在对小麦数据集的定量建模中,小麦蛋白质模型的决定系数为99.80%。为了验证主成分分析光谱筛选算法对粮食作物主要成分定量回归模型的有效性,在3个光谱数据集上去除了主成分分析算法进行消融实验。研究结果表明:基于主成分分析算法与一维卷积神经网络的回归建模方法为粮食作物成分含量的检测提供一种快速无损精确的判定方式,研究结果对于粮食作物成分的含量检测具有促进作用。 展开更多
关键词 近红外光谱 主成分分析 一维卷积神经网络 粮食作物 成分检测
在线阅读 下载PDF
基于1DCNN-ELM的带式输送机托辊轴承故障诊断研究 被引量:4
17
作者 张伟 李军霞 +1 位作者 吴磊 李斌 《煤炭科学技术》 EI CAS CSCD 北大核心 2023年第S01期383-389,共7页
针对带式输送机托辊轴承故障诊断中振动信号提取特征困难而导致故障诊断精度较低的难题,提出了一种基于一维卷积神经网络(1DCNN)和极限学习机(ELM)的托辊轴承故障诊断方法。首先,根据具体的故障诊断任务,对采集到的数据进行划分,并进行... 针对带式输送机托辊轴承故障诊断中振动信号提取特征困难而导致故障诊断精度较低的难题,提出了一种基于一维卷积神经网络(1DCNN)和极限学习机(ELM)的托辊轴承故障诊断方法。首先,根据具体的故障诊断任务,对采集到的数据进行划分,并进行傅里叶变换,采用多个标签表示健康状态、故障类型和损伤程度。然后,利用1DCNN来提取故障特征,根据提取的故障特征利用ELM进行故障分类。该方法中的参数是随机产生的,不需要迭代更新,可有效加快计算速度。最后,通过Case Western Reserve University的轴承数据集以及自制托辊故障数据集进行故障诊断试验,测试精度均达到了100%,用时分别为2.82 s和2.42 s,能够在较短的时间内准确判断出托辊故障类型,验证了所提方法的有效性。通过与ELM、随机森林、K最邻近法、支持向量机和卷积神经网络等方法进行对比,体现了所提方法的优越性。结果表明:采用1DCNN和ELM相结合的诊断方法,其诊断效果比采用单一方法更好,能够满足煤矿领域托辊故障诊断的需求。 展开更多
关键词 一维卷积神经网络 极限学习机 托辊 轴承 故障诊断
在线阅读 下载PDF
基于1DCNN的机载火控雷达空空工作状态识别 被引量:4
18
作者 马珂 毕大平 +1 位作者 周圣栾 何文波 《现代雷达》 CSCD 北大核心 2023年第3期17-23,共7页
针对机载火控雷达空空工作模式识别局限性大的问题,从电子情报和雷达告警系统的视角定义了八种工作状态,提出了基于一维卷积神经网络的识别方法。基于不同工作状态的波形特征开发了信号模拟器,构建了全脉冲数据预处理和工作状态自动识... 针对机载火控雷达空空工作模式识别局限性大的问题,从电子情报和雷达告警系统的视角定义了八种工作状态,提出了基于一维卷积神经网络的识别方法。基于不同工作状态的波形特征开发了信号模拟器,构建了全脉冲数据预处理和工作状态自动识别的一维卷积神经网络结构,迭代训练确定最优的网络参数完成状态识别。仿真结果表明:文中提出的识别方法精度高,且对信噪比小、错漏脉冲多的信号适应能力强,具有较强的工程应用价值。 展开更多
关键词 机载火控雷达 空空工作状态 一维卷积神经网络
在线阅读 下载PDF
基于1DCNN与双通道信息融合的柴油发动机故障诊断 被引量:2
19
作者 白雲杰 贾希胜 +2 位作者 梁庆海 马云飞 白华军 《车用发动机》 北大核心 2021年第6期76-81,共6页
针对传统单通道振动信号诊断方法只能采集部分信息用于局部诊断,而多通道信号融合权重确定困难、实时性差的问题,提出一种基于深度一维卷积神经网络(One-dimensional Deep Convolutional Neural Network, 1DCNN)与双通道信息融合的柴油... 针对传统单通道振动信号诊断方法只能采集部分信息用于局部诊断,而多通道信号融合权重确定困难、实时性差的问题,提出一种基于深度一维卷积神经网络(One-dimensional Deep Convolutional Neural Network, 1DCNN)与双通道信息融合的柴油发动机故障诊断方法。通过搭建柴油发动机预置故障试验台,将传感器配置于发动机不同位置以采集发动机运行过程中的双通道故障信号,分别提取振动信号中的最大值、最小值、峰峰值、均值、整流平均值、方差、标准差、峭度等14个特征,构建特征集矩阵并利用主成分分析(Principal Component Analysis, PCA)进行特征融合,输入深度一维卷积神经网络,实现对发动机不同故障状态的诊断。试验结果表明,该方法可以有效识别发动机不同的故障状态,与单通道信号诊断相比,所提出的双通道信息融合方法在发动机故障诊断中具有更好的效果。 展开更多
关键词 一维卷积神经网络 信息融合 柴油机 故障诊断
在线阅读 下载PDF
基于VMD-SampEn-M1DCNN组合模型的钳形电流互感器故障诊断 被引量:2
20
作者 孙晓峰 崔晋 +3 位作者 刘春晖 宫振宇 朱博 姬少培 《现代电子技术》 2023年第22期33-40,共8页
针对钳形电流互感器故障诊断效率和诊断准确率低的问题,提出一种基于VMD-SampEn-M1DCNN组合模型的钳形电流互感器故障诊断模型。首先,以钳形电流互感器数据为基础,对其进行VMD分解,以建立本征模函数(IMF),并进行IMF分量选择;然后,选取IM... 针对钳形电流互感器故障诊断效率和诊断准确率低的问题,提出一种基于VMD-SampEn-M1DCNN组合模型的钳形电流互感器故障诊断模型。首先,以钳形电流互感器数据为基础,对其进行VMD分解,以建立本征模函数(IMF),并进行IMF分量选择;然后,选取IMF分量分析样本熵,并将其作为互感器特征提取对象的特征值;最后构建了M1DCNN模型,对模型进行样本数据训练和测试。结合实验分析结果,证实VMD-SampEn-M1DCNN模型在训练时间、测试时间和模型测试精准度方面,与传统故障诊断相比都有明显的优势,能进行故障的精准诊断。 展开更多
关键词 钳形电流互感器 故障诊断 变分模态分解 一维卷积神经网络 本征模函数 样本熵
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部