进化规划中,个体选择变异策略特别重要.适应性变异策略因在进化过程中动态选择个体变异策略,能够取得较好的性能.传统适应性变异策略都依据个体一步进化效果考察个体适应性,没有从多步进化效果上对变异策略进行评价.本文提出一种新的基...进化规划中,个体选择变异策略特别重要.适应性变异策略因在进化过程中动态选择个体变异策略,能够取得较好的性能.传统适应性变异策略都依据个体一步进化效果考察个体适应性,没有从多步进化效果上对变异策略进行评价.本文提出一种新的基于Q学习的适应性进化规划算法QEP(Q learning based evolutionary programming),该算法将变异策略看成行动,考察个体多步进化效果,并通过计算Q函数值,学习个体最优变异策略.实验表明,QEP能够获得好的性能.展开更多
光伏阵列输出在不同工况下具有单峰或多峰特性.针对因最大功率点跟踪(maximum power point tracking,简称MPPT)精度不高、跟踪时间较长而导致光伏发电效率低下的问题,提出一种改进的量子粒子群优化(quantum particle swarm optimization...光伏阵列输出在不同工况下具有单峰或多峰特性.针对因最大功率点跟踪(maximum power point tracking,简称MPPT)精度不高、跟踪时间较长而导致光伏发电效率低下的问题,提出一种改进的量子粒子群优化(quantum particle swarm optimization,简称QPSO)算法.采用Logistic混沌映射初始化粒子种群;在种群进化前期将反向学习策略引入惯性权重自适应调整的量子粒子群优化(dynamically changing weights quantum-behaved particle swarm optimization,简称DCWQPSO),扩大种群搜索范围,提高种群的全局搜索能力;在种群进化后期将模拟退火机制引入DCWQPSO,提高种群收敛速度,并对粒子群进行柯西变异,增强粒子的多样性,提升局部搜索能力.Matlab仿真结果表明:相对其他4种算法,该文提出的改进QPSO算法的跟踪时间更短、跟踪精度更高.因此,该文算法具有优越性.展开更多
传统钢筋混凝土检测方法通过线性拟合或标准值查表法只能对钢筋直径做大致估算,无法精确测量。针对钢筋直径检测中样本数据较少、检测结果受到钢筋埋深及相邻钢筋间距的影响而非表现出非线性回归变化的情况,提出了基于改进灰狼算法(Impr...传统钢筋混凝土检测方法通过线性拟合或标准值查表法只能对钢筋直径做大致估算,无法精确测量。针对钢筋直径检测中样本数据较少、检测结果受到钢筋埋深及相邻钢筋间距的影响而非表现出非线性回归变化的情况,提出了基于改进灰狼算法(Improved Grey Wolf Optimizer,IGWO)优化的支持向量回归机(Support Vector Regression,SVR)检测方法(IGWO-SVR)。首先,通过反向学习策略优化初始化种群分布,改善了灰狼优化算法(Grey Wolf Optimizer,GWO)的全局搜索能力,通过随机差分变异策略扩大狼群动态搜索范围,避免了灰狼优化算法陷入局部最优;然后,将改进后的灰狼优化算法应用于支持向量回归机的核心参数寻优,以改良算法模型的检测性能;最后,与另外3种算法模型的实验结果进行对比分析,结果表明了所提方法在钢筋直径检测中的精度以及优化模型与实际值的拟合度都得到了有效提升。展开更多
针对蝴蝶优化算法(butterfly optimization algorithm,BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly wit...针对蝴蝶优化算法(butterfly optimization algorithm,BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly with reverse mutation towards optimization learning,OMSSBOA)。引入柯西变异对最优蝴蝶个体进行扰动,避免算法陷入局部最优;将改进的樽海鞘群优化算法(salp swarm algorithm,SSA)嵌入到BOA,平衡算法全局勘探和局部开采的比重,进而提高算法收敛速度;利用趋优变异反向学习策略扩大算法搜索范围并提升解的质量,进而提高算法的寻优精度。将改进算法在10种基准测试函数上进行仿真实验,结果表明,改进算法具有较好的寻优性能和鲁棒性。展开更多
文摘进化规划中,个体选择变异策略特别重要.适应性变异策略因在进化过程中动态选择个体变异策略,能够取得较好的性能.传统适应性变异策略都依据个体一步进化效果考察个体适应性,没有从多步进化效果上对变异策略进行评价.本文提出一种新的基于Q学习的适应性进化规划算法QEP(Q learning based evolutionary programming),该算法将变异策略看成行动,考察个体多步进化效果,并通过计算Q函数值,学习个体最优变异策略.实验表明,QEP能够获得好的性能.
文摘传统钢筋混凝土检测方法通过线性拟合或标准值查表法只能对钢筋直径做大致估算,无法精确测量。针对钢筋直径检测中样本数据较少、检测结果受到钢筋埋深及相邻钢筋间距的影响而非表现出非线性回归变化的情况,提出了基于改进灰狼算法(Improved Grey Wolf Optimizer,IGWO)优化的支持向量回归机(Support Vector Regression,SVR)检测方法(IGWO-SVR)。首先,通过反向学习策略优化初始化种群分布,改善了灰狼优化算法(Grey Wolf Optimizer,GWO)的全局搜索能力,通过随机差分变异策略扩大狼群动态搜索范围,避免了灰狼优化算法陷入局部最优;然后,将改进后的灰狼优化算法应用于支持向量回归机的核心参数寻优,以改良算法模型的检测性能;最后,与另外3种算法模型的实验结果进行对比分析,结果表明了所提方法在钢筋直径检测中的精度以及优化模型与实际值的拟合度都得到了有效提升。
文摘针对蝴蝶优化算法(butterfly optimization algorithm,BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly with reverse mutation towards optimization learning,OMSSBOA)。引入柯西变异对最优蝴蝶个体进行扰动,避免算法陷入局部最优;将改进的樽海鞘群优化算法(salp swarm algorithm,SSA)嵌入到BOA,平衡算法全局勘探和局部开采的比重,进而提高算法收敛速度;利用趋优变异反向学习策略扩大算法搜索范围并提升解的质量,进而提高算法的寻优精度。将改进算法在10种基准测试函数上进行仿真实验,结果表明,改进算法具有较好的寻优性能和鲁棒性。