[目的/意义]为解决当前作物管理中个性化需求难以捕捉、决策过程缺乏灵活性难题,本研究提出了一种基于大语言模型的个性化作物生产智能决策方法[方法]通过自然语言对话收集用户在蔬菜作物管理过程中的个性化需求,涵盖产量、人力资源消...[目的/意义]为解决当前作物管理中个性化需求难以捕捉、决策过程缺乏灵活性难题,本研究提出了一种基于大语言模型的个性化作物生产智能决策方法[方法]通过自然语言对话收集用户在蔬菜作物管理过程中的个性化需求,涵盖产量、人力资源消耗和水肥消耗等方面。随后,将作物管理过程建模为多目标优化问题,同时考虑用户个性化偏好和作物产量,并采用强化学习算法来学习作物管理策略。水肥管理策略的训练通过与环境的交互持续更新,学习在不同条件下采取何种行动以实现最优决策,从而实现个性化的作物管理。[结果和讨论]在gym-DSSAT(Gym-Decision Support System for Agrotechnology Transfer)仿真平台上进行的实验,结果表明,所提出的个性化作物生产智能决策方法能够有效地根据用户的个性化偏好调整作物管理策略。[结论]通过精准捕捉用户的个性化需求,该方法在保证作物产量的同时,优化了人力资源与水肥资源的消耗。展开更多
分别从“点对点”雨量检验和降水空间结构特征检验两方面对多个数值模式东亚夏季中短期逐日降水集合预报进行评估,结果表明不同模式对降水的不同方面存在不一样的预报能力。借助基于对象的诊断评估方法(method for object-based diagnos...分别从“点对点”雨量检验和降水空间结构特征检验两方面对多个数值模式东亚夏季中短期逐日降水集合预报进行评估,结果表明不同模式对降水的不同方面存在不一样的预报能力。借助基于对象的诊断评估方法(method for object-based diagnostic evaluation,简称MODE)提出了基于降水对象的超级集合(Object-based Superensemble,简称OBJSUP)模型,采用观测场和预报场中降水对象空间结构的相似度来分配各个成员模式的权重,有别于利用传统“点对点”误差分析来计算权重的超级集合(Gridpoint-based Superensemble,简称GPSUP)。相比于最优单模式,两种多模式集成预报均有效地提高了中短期降水预报技巧,且OBJSUP模型整体优于GPSUP模型,主要原因在于OBJSUP模型可以较好地改进降水对象的质心位置预报。为进一步检验多模式集成模型对强降水空间结构特征的预报能力,针对2018年夏季广东一次极端强降水事件,多模式集成预报与高分辨率区域模式动力降尺度预报对比表明,多模式集成对强降水的预报不足,但对广东省逐日大雨量级降水和过程累积降水量空间分布预报较好。高分辨率区域模式对此个例中粤东地区发生的强降水具有一定的预报能力,但对广东省其他地区降水量预报偏弱。展开更多
文摘[目的/意义]为解决当前作物管理中个性化需求难以捕捉、决策过程缺乏灵活性难题,本研究提出了一种基于大语言模型的个性化作物生产智能决策方法[方法]通过自然语言对话收集用户在蔬菜作物管理过程中的个性化需求,涵盖产量、人力资源消耗和水肥消耗等方面。随后,将作物管理过程建模为多目标优化问题,同时考虑用户个性化偏好和作物产量,并采用强化学习算法来学习作物管理策略。水肥管理策略的训练通过与环境的交互持续更新,学习在不同条件下采取何种行动以实现最优决策,从而实现个性化的作物管理。[结果和讨论]在gym-DSSAT(Gym-Decision Support System for Agrotechnology Transfer)仿真平台上进行的实验,结果表明,所提出的个性化作物生产智能决策方法能够有效地根据用户的个性化偏好调整作物管理策略。[结论]通过精准捕捉用户的个性化需求,该方法在保证作物产量的同时,优化了人力资源与水肥资源的消耗。