A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u...A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.展开更多
In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concer...In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concerns with the detection capabilities rather than coverage performance. To establish the relationship between these two aspects, the reconnaissance processes of normal stochastic targets are considered and the mathematic models of detection processes are built. The indicators of coverage performance are used to evaluate the detection probability and expectation of detection time delay, which are important factors in reconnaissance constellation estimation viewed from military intelligence discipline. The conclusions confirmed by the final simulation will be useful in LEO reconnaissance constellation design, optimization and evaluation.展开更多
This paper studies the multi-sensor management problem for low earth orbit(LEO) infrared warning constellation used to track a midcourse missile. A covariance control approach, which selects sensor combinations or sub...This paper studies the multi-sensor management problem for low earth orbit(LEO) infrared warning constellation used to track a midcourse missile. A covariance control approach, which selects sensor combinations or subset based on the difference between the desired covariance matrix and the actual covariance of each target, is used for sensor management, including some matrix metrics to measure the differentia between two covariance matrices. Besides, to meet the requirements of the space based warning system, the original covariance control approach is improved. Simulation results demonstrate that the covariance control approach is able to provide a better tracking performance by providing a well-designed desired covariance and balance tracking performance goals with system demands.展开更多
近年来,在低轨(LEO)卫星星座通信网络中采用网际协议(IP)路由算法的研究已经取得了一系列进展,文章论述了LEO星座通信网络的特点、拓扑结构和虚拟节点策略。在此基础上提出了基于泛洪路由的LEO星座动态源路由算法DSR-LSN(Dynamic Source...近年来,在低轨(LEO)卫星星座通信网络中采用网际协议(IP)路由算法的研究已经取得了一系列进展,文章论述了LEO星座通信网络的特点、拓扑结构和虚拟节点策略。在此基础上提出了基于泛洪路由的LEO星座动态源路由算法DSR-LSN(Dynamic Source Routing algorithm in LEO Satellite Networks),星座网络仿真表明,DSR-LSN算法具有网络路由状态稳定性好、时延小的优点。展开更多
基金This work was supported by the National Key Research and Development Program of China(2021YFB2900603)the National Natural Science Foundation of China(61831008).
文摘A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.
文摘In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concerns with the detection capabilities rather than coverage performance. To establish the relationship between these two aspects, the reconnaissance processes of normal stochastic targets are considered and the mathematic models of detection processes are built. The indicators of coverage performance are used to evaluate the detection probability and expectation of detection time delay, which are important factors in reconnaissance constellation estimation viewed from military intelligence discipline. The conclusions confirmed by the final simulation will be useful in LEO reconnaissance constellation design, optimization and evaluation.
基金supported by the National Natural Science Foundation of China(61690210 61690213)
文摘This paper studies the multi-sensor management problem for low earth orbit(LEO) infrared warning constellation used to track a midcourse missile. A covariance control approach, which selects sensor combinations or subset based on the difference between the desired covariance matrix and the actual covariance of each target, is used for sensor management, including some matrix metrics to measure the differentia between two covariance matrices. Besides, to meet the requirements of the space based warning system, the original covariance control approach is improved. Simulation results demonstrate that the covariance control approach is able to provide a better tracking performance by providing a well-designed desired covariance and balance tracking performance goals with system demands.
文摘近年来,在低轨(LEO)卫星星座通信网络中采用网际协议(IP)路由算法的研究已经取得了一系列进展,文章论述了LEO星座通信网络的特点、拓扑结构和虚拟节点策略。在此基础上提出了基于泛洪路由的LEO星座动态源路由算法DSR-LSN(Dynamic Source Routing algorithm in LEO Satellite Networks),星座网络仿真表明,DSR-LSN算法具有网络路由状态稳定性好、时延小的优点。