期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法
1
作者 张涛 魏彪 +2 位作者 李永健 马赫 何勇 《现代电子技术》 北大核心 2025年第12期54-60,共7页
针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO... 针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO)勘察阶段,通过非线性加权系数ω动态调节步长搜索因子,降低个体位置更新对局部信息的依赖,显著提高算法收敛速度与精度;最后,构建多尺度均值排列熵(MMPE)与峭度的融合指标作为适应度函数,增强故障特征敏感性。通过对不同的实测信号进行测试,结果表明,在强噪声干扰下,相较传统方法,所提方法可提前300 min(初期故障)和700 min(微弱故障)识别故障特征,验证了其工程实用性。 展开更多
关键词 正余弦算法 滚动轴承 故障诊断 改进北方苍鹰优化算法 多尺度均值排列熵 变分模态分解
在线阅读 下载PDF
基于扩展型活性膜系统的彩色图像分割方法
2
作者 许家昌 郭佳 苏树智 《深圳大学学报(理工版)》 北大核心 2025年第1期59-67,共9页
为克服优化算法易陷入局部最优和收敛速度慢的局限,提高扩展膜系统在图像处理领域的优化性能,提出一种基于扩展型活性膜系统(P system)的改进北方苍鹰优化(improved northern goshawk optimization,INGO)算法——PINGO.采用北方苍鹰优... 为克服优化算法易陷入局部最优和收敛速度慢的局限,提高扩展膜系统在图像处理领域的优化性能,提出一种基于扩展型活性膜系统(P system)的改进北方苍鹰优化(improved northern goshawk optimization,INGO)算法——PINGO.采用北方苍鹰优化算法作为基本膜中的进化规则,通过更新苍鹰的状态进化基本膜中的对象,将INGO算法作为局部进化规则来进化子膜中的对象.该系统根据活性膜自身的特点在基本膜中溶解或产生子膜,通信规则用于实现不同膜之间的信息交换与共享,避免算法陷入局部最优.在数据集BSD300和BSD500上,分别采用海鸥优化(seagull optimization algorithm,SOA)算法、灰狼优化(grey wolf optimizer,GWO)算法、INGO算法和PINGO算法,对不同优化阈值个数的图像进行分割.结果表明,PINGO算法在分割后的图像上的峰值信噪比均优于其他算法,特征相似度最优值也占了83%,在保持色彩与纹理的同时提高了分割的准确性.研究结果表明了所提彩色图像分割方法的有效性. 展开更多
关键词 图像处理 图像分割 P系统 活性膜结构 北方苍鹰优化算法 进化规则
在线阅读 下载PDF
基于改进北方苍鹰算法优化SVM的轴承故障诊断研究
3
作者 吴晓君 李渠伟 《机械强度》 北大核心 2025年第5期80-89,共10页
针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自... 针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自适应惯性权重因子以及柯西变异策略来改进北方苍鹰优化(Northern Goshawk Optimization,NGO)算法,并结合SVM构建INGO-SVM故障诊断模型。为评估改进算法的性能,首先,使用基准测试函数进行了试验,并将改进算法与现有的NGO、粒子群优化(Particle Swarm Optimization,PSO)算法、麻雀搜索算法(Sparrow Search Algorithm,SSA)等进行比较,改进算法的性能在一定程度上有所提升。然后,通过小波包分解对原始诊断信号进行特征提取并划分出10种类别,使用第3层各频段的能量作为特征向量,输入到故障诊断模型;最后,比较了改进算法与其他3种算法在优化SVM参数进行故障分类时的性能。结果表明,改进算法能够有效准确地实现不同故障的分类,准确率可达99.39%,验证了该方法的有效性和可行性。 展开更多
关键词 故障诊断 改进北方苍鹰优化算法 柯西变异策略 小波包分解 支持向量机
在线阅读 下载PDF
基于改进NGO算法的LEACH多跳路由优化方法
4
作者 韩冰青 熊培淞 《计算机工程与设计》 北大核心 2025年第11期3167-3173,共7页
针对Leach(low energy adaptive clustering hierarchy)协议在大规模网络中存在着数据传输效率不高和网络生命周期短的问题,提出了一种LEACH-CM-NGO优化算法。该方法通过在簇头选取阶段优化簇头数在所有节点中占比,引进能量密度因子和... 针对Leach(low energy adaptive clustering hierarchy)协议在大规模网络中存在着数据传输效率不高和网络生命周期短的问题,提出了一种LEACH-CM-NGO优化算法。该方法通过在簇头选取阶段优化簇头数在所有节点中占比,引进能量密度因子和能耗因子改进阈值公式优化簇头分布,并在数据传输阶段,由原本的单跳传输改为多跳方式传输数据,引入基于立方映射方法,自适应权重策略和柯西变异的北方苍鹰优化算法改进簇头间数据传输路径,以提高网络的能效和数据传输效率。仿真结果表明,所提出的方法在减少能耗的同时,显著延长了网络的生命周期并提高了数据传输的成功率。 展开更多
关键词 无线传感网 低功耗自适应聚类协议 阈值公式 柯西变异 北方苍鹰优化算法 能量密度因子 多跳传输
在线阅读 下载PDF
基于改进北方苍鹰算法与混合核极限学习机的齿轮箱故障诊断 被引量:2
5
作者 杜董生 王梦姣 +1 位作者 冒泽慧 赵环宇 《控制理论与应用》 北大核心 2025年第4期796-804,共9页
针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪... 针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪后的信号分解成多个本征模态函数(IMF),使用方差贡献率、相关系数和信息熵筛选出最优的IMF.将最优IMF重构后,对重构信号进行时间同步平均(TSA)去噪以减少故障诊断模型的数据计算量.将Tent混沌映射、混合正弦余弦算法和Levy飞行策略用于改进北方苍鹰优化(NGO)算法,得到一种新的INGO算法.同时,引入余弦因子以平衡正弦余弦算法的全局和局部开发能力.最后,利用INGO算法对HKELM进行优化,用以提高HKELM模型的故障诊断准确率.将所提方法应用于两个案例对模型进行检验,实验结果表明,本文所提方法具有可行性和优越性. 展开更多
关键词 混合核极限学习机 改进北方苍鹰优化算法 时变滤波经验模态分解 故障诊断
在线阅读 下载PDF
融合多策略改进的北方苍鹰算法及其应用 被引量:1
6
作者 赵深 韦根原 +2 位作者 常耀华 陈亮 侯彦辰 《电子测量技术》 北大核心 2025年第13期96-110,共15页
针对北方苍鹰算法寻优精度低以及容易陷入最优值等问题,提出一种融合减法优化器和t分布小波变异的改进北方苍鹰算法。首先,在算法初始阶段利用Tent映射-动态反向学习策略,提高初始种群的质量和多样性,加快算法的迭代速度;其次,在勘探阶... 针对北方苍鹰算法寻优精度低以及容易陷入最优值等问题,提出一种融合减法优化器和t分布小波变异的改进北方苍鹰算法。首先,在算法初始阶段利用Tent映射-动态反向学习策略,提高初始种群的质量和多样性,加快算法的迭代速度;其次,在勘探阶段融合减法平均优化器和最佳值引导策略更新种群位置;最后,采用自适应t分布小波变异策略对种群进行扰动,避免陷入局部最优。通过测试函数仿真实验并将改进后的算法与极限学习机相结合,用于预测光伏发电量的情况,同时应用于两种工程设计问题中,实验结果表明,改进后的算法对比其他改进算法在收敛精确度和鲁棒性方面有显著提升,并且有效提升了解决复杂问题的性能。 展开更多
关键词 北方苍鹰算法 混沌映射 动态反向学习 减法平均优化器 自适应t分布小波变异 光伏预测
在线阅读 下载PDF
多策略优化粒子滤波算法的车辆状态估计
7
作者 徐祥书 李广军 张兰春 《机械设计》 北大核心 2025年第8期134-143,共10页
质心侧偏角是汽车控制系统中重要的控制状态参数,一般由汽车行驶状态观测器估计来获取,提高质心侧偏角的估计精度将有助于车辆控制理论的研究。针对分布式电动汽车非线性、非高斯的行驶特点,提出多策略优化的粒子滤波算法,用种群多样性... 质心侧偏角是汽车控制系统中重要的控制状态参数,一般由汽车行驶状态观测器估计来获取,提高质心侧偏角的估计精度将有助于车辆控制理论的研究。针对分布式电动汽车非线性、非高斯的行驶特点,提出多策略优化的粒子滤波算法,用种群多样性改进的北方苍鹰算法更新粒子滤波预测阶段和适应度改进权值组合优化粒子滤波重采样阶段,并基于该算法设计了车辆动力学与运动学相结合的分布式纯电动汽车行驶状态观测器。通过CarSim-Simulink对典型工况下的车辆进行联合仿真,得出了该算法的观测器对质心侧偏角的估计有更高的精度。 展开更多
关键词 分布驱动 粒子滤波 北方苍鹰算法 种群多样性 权值组合
在线阅读 下载PDF
基于VAE-GRU和残差注意力的大坝位移深度学习预测模型
8
作者 仵凡 郑浩然 +1 位作者 漆一宁 苏怀智 《水电能源科学》 北大核心 2025年第8期152-156,共5页
针对大坝变形序列中非线性特征对预测精度的影响,提出了一种基于变分自编码器(VAE)、双向门控循环单元(GRU)和残差注意力机制(RA)的深度学习模型。首先,利用VAE对大坝位移数据进行特征提取,将复杂的高维环境数据映射到低维潜在空间。然... 针对大坝变形序列中非线性特征对预测精度的影响,提出了一种基于变分自编码器(VAE)、双向门控循环单元(GRU)和残差注意力机制(RA)的深度学习模型。首先,利用VAE对大坝位移数据进行特征提取,将复杂的高维环境数据映射到低维潜在空间。然后,采用GRU捕捉时间依赖性,并引入残差注意力机制增强模型对关键特征的关注能力。最后,结合北方苍鹰优化算法(NGO)对模型的超参数进行优化,以进一步提高预测精度。工程实例分析结果表明,VAE-RAGRU模型在大坝位移预测中表现优异,显著优于其他机器学习模型,为大坝安全监控提供了一个高效、准确的新方法。 展开更多
关键词 大坝变形预测 变分自编码器 门控循环单元 残差注意力机制 北方苍鹰优化算法
在线阅读 下载PDF
基于INGO-CSA-LSTMN的变转速齿轮故障智能识别方法
9
作者 陈向民 李博 +3 位作者 张亢 姚鹏 李泳辉 雷瀚霖 《动力工程学报》 北大核心 2025年第6期913-923,共11页
为提高齿轮在变转速工况下的故障识别效率和准确率,提出了一种基于改进北方苍鹰优化(improved northern goshawk optimization,INGO)算法优化卷积自注意力长短期记忆网络(convolutional self-attention long short-term memory network,... 为提高齿轮在变转速工况下的故障识别效率和准确率,提出了一种基于改进北方苍鹰优化(improved northern goshawk optimization,INGO)算法优化卷积自注意力长短期记忆网络(convolutional self-attention long short-term memory network,CSA-LSTMN)的变转速齿轮故障智能识别方法,即INGO-CSA-LSTMN。针对传统北方苍鹰优化算法训练时间过长和容易陷入局部最优的问题,引入正弦脉冲调制混沌映射和随机莱维飞行策略,提出一种INGO算法,并将其应用于所构建的CSA-LSTMN模型的关键参数寻优,以提高该模型的稳定性及训练效率。通过测试函数的检验表明:INGO算法具有更快的收敛速度,可更准确地找到最优解。通过2种不同试验台齿轮数据集的分析表明:相较于其他常用网络模型,INGO-CSA-LSTMN模型对于不同工况下的齿轮故障具有更高的识别精度,准确率均在99.9%以上。 展开更多
关键词 变转速工况 齿轮 北方苍鹰优化算法 卷积自注意力长短期记忆网 智能诊断
在线阅读 下载PDF
基于多策略改进北方苍鹰算法的多光谱辐射测温方法
10
作者 陈智炜 高山 +3 位作者 韩月 刘海龙 陈立伟 王桐 《哈尔滨工程大学学报》 北大核心 2025年第10期2107-2115,共9页
为了解决多光谱辐射测温中发射率先验信息未知且提前假设发射率模型不匹配的问题,本文提出了基于多策略改进北方苍鹰算法的多光谱辐射测温数据处理方法。相比于传统北方苍鹰算法,通过引入最佳值引导策略、减法优化器算法、柯西变异、动... 为了解决多光谱辐射测温中发射率先验信息未知且提前假设发射率模型不匹配的问题,本文提出了基于多策略改进北方苍鹰算法的多光谱辐射测温数据处理方法。相比于传统北方苍鹰算法,通过引入最佳值引导策略、减法优化器算法、柯西变异、动态更新等操作改进算法,方程求解具有更高的精度以及收敛速度。对6种典型发射率模型以及火箭发动机羽焰温度实验的数据进行处理,反演后的温度最大相对误差都小于1%,且单次反演时间小于0.5 s,证明了本文算法是可靠有效的,为多光谱温度在线监测提供了一种新的思路和方法。 展开更多
关键词 多光谱 发射率 北方苍鹰 数据处理 辐射测温 启发式算法 温度反演 无模型化光谱测温
在线阅读 下载PDF
基于改进北方苍鹰优化算法的时间卷积网络及其应用
11
作者 王丽敏 赵侠 +2 位作者 王丝雨 郭枝威 高铭晗 《吉林大学学报(理学版)》 北大核心 2025年第5期1379-1386,共8页
针对时间卷积网络存在的超参数选择困难及预测结果波动性较大的问题,提出一种基于改进北方苍鹰优化算法的时间卷积网络模型.首先,提出一种基于混合策略改进的北方苍鹰优化算法,通过融合Sine混沌映射初始化种群、引入非线性惯性权重调整... 针对时间卷积网络存在的超参数选择困难及预测结果波动性较大的问题,提出一种基于改进北方苍鹰优化算法的时间卷积网络模型.首先,提出一种基于混合策略改进的北方苍鹰优化算法,通过融合Sine混沌映射初始化种群、引入非线性惯性权重调整策略以及结合Lévy飞行机制,增强算法的全局探索与局部开发能力.其次,将时间卷积网络的预测误差作为优化目标,利用改进的北方苍鹰优化算法自动搜索其最优超参数组合,构建时序预测模型.在电力负荷预测任务中的实验结果表明,该预测模型相较于其他改进时间卷积网络,在预测精度和结果稳定性方面均有显著优势,为解决时间卷积网络超参数选择问题提供了一种高效、鲁棒的自动化优化方法,提升了时间卷积网络模型在复杂时间序列预测任务中的精度和可靠性,有实际应用价值. 展开更多
关键词 北方苍鹰优化算法 时间卷积网络 电力负荷预测 超参数选择
在线阅读 下载PDF
基于INGO-RF的边坡稳定性预测模型
12
作者 石峻峰 周琳 +1 位作者 任宇联 王志鹏 《安全与环境学报》 北大核心 2025年第4期1380-1390,共11页
为提高边坡稳定性的预测精度以预防边坡失稳事故发生,提出了一种基于改进北方苍鹰算法优化随机森林(Improved Northern Goshawk Optimization algorithm optimized Random Forest, INGO-RF)的边坡稳定性预测模型。首先,根据413个边坡案... 为提高边坡稳定性的预测精度以预防边坡失稳事故发生,提出了一种基于改进北方苍鹰算法优化随机森林(Improved Northern Goshawk Optimization algorithm optimized Random Forest, INGO-RF)的边坡稳定性预测模型。首先,根据413个边坡案例,选取重度γ、黏聚力c、内摩擦角φ、边坡角α、边坡高度H和孔隙压力比ru作为主要预测特征指标。其次,由于传统随机森林模型存在超参数问题,采用最佳值引导、减法优化器、柯西变异和动态调整搜索策略的INGO算法优化随机森林(Random Forest, RF)模型超参数。最后,与5种不同算法相比,所设计的INGO算法在8个测试函数中展现出更优的参数寻优能力和收敛速度;与5种不同预测模型相比,所设计的INGO-RF模型的各项评估指标均优于其他模型,该模型在训练集和测试集中的准确率分别为99.1%和91.2%,且发现γ是影响边坡稳定性的最敏感特征。研究表明,INGO-RF预测模型为边坡稳定性预测提供了一种新思路。 展开更多
关键词 安全工程 边坡稳定性 可视化分析 改进北方苍鹰优化算法 随机森林 预测模型
在线阅读 下载PDF
可调光程柱面多通池TDLAS系统
13
作者 李桃花 牛明生 +5 位作者 史永鹏 李辉 刘慧园 杨乐 袁昊天 方宏福 《光学精密工程》 北大核心 2025年第2期194-208,共15页
为了提高TDLAS检测系统的检测性能和集成度,设计了一种基于便携式可调光程的柱面镜多通池的TDLAS系统,实现了从14 m,10.6 m,9.2 m,7.1 m和5.8 m仿真光程的转换。为了降低TDLAS系统测量气体过程中产生的噪声对检测精度和灵敏度的影响,提... 为了提高TDLAS检测系统的检测性能和集成度,设计了一种基于便携式可调光程的柱面镜多通池的TDLAS系统,实现了从14 m,10.6 m,9.2 m,7.1 m和5.8 m仿真光程的转换。为了降低TDLAS系统测量气体过程中产生的噪声对检测精度和灵敏度的影响,提出了基于北方苍鹰优化(NGO)算法的变分模态分解(VMD)小波去噪算法。仿真结果表明,与其他算法相比,NGO-VMD小波去噪算法能够更有效地降低噪声,且不会引起信号的失真。利用直接吸收检测技术,使用中心波长为1.653μm的DFB激光器对CH4进行测试以评估系统的性能,结果表明,采用NGO-VMD小波去噪算法使检测信号的信噪比由66提高到109,系统的检测下限由12.1 ppm改善为7.28 ppm。Allan方差分析可知,在积分时间为263 s时,系统检测甲烷的最佳检测灵敏度从641 ppb提升为526 ppb,系统的检测下限和灵敏度都得到有效的提高,为优化TDLAS痕量气体检测系统提供了参考。 展开更多
关键词 TDLAS 直接吸收 可调光程 北方苍鹰优化算法 变分模态分解
在线阅读 下载PDF
基于新型相似日选取和VMD-NGO-BiGRU的短期光伏功率预测 被引量:13
14
作者 王瑞 张璐婷 逯静 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期68-80,共13页
光伏功率预测在现代电力系统调度和运行中起着重要作用.针对光伏发电功率的多变性和复杂性,提出了一种基于新型相似日选取和北方苍鹰算法(Northern Goshawk Optimization,NGO)优化双向门控循环单元(Bidirectional Gated Recurrent Unit,... 光伏功率预测在现代电力系统调度和运行中起着重要作用.针对光伏发电功率的多变性和复杂性,提出了一种基于新型相似日选取和北方苍鹰算法(Northern Goshawk Optimization,NGO)优化双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)的短期光伏功率预测方法.首先,利用斯皮尔曼相关系数选取主要气象因子,通过变分模态分解(Variational Mode Decomposition,VMD)将原始光伏功率和最大气象因子分解重构为一系列子信号.其次,通过构建新的评价指标筛选出相似日数据集,利用一组BiGRU建立以相似日子信号为网络输入的深度学习模型,并利用NGO对每个BiGRU网络的超参数进行有效优化.最后,对各子信号的预测结果进行综合,得到最终的光伏功率预测值.仿真结果表明,所提混合深度学习方法在预测精度和计算效率方面均优于其他方法. 展开更多
关键词 光伏功率预测 变分模态分解 双向门控循环单元 北方苍鹰算法
在线阅读 下载PDF
基于改进NGO算法优化SVM的变压器故障诊断研究 被引量:3
15
作者 陈忠华 王森 《控制工程》 CSCD 北大核心 2024年第11期2010-2018,共9页
为解决通过油中溶解气体诊断变压器故障精确度不高的问题,提出了一种改进北方苍鹰优化(INGO)算法优化支持向量机(SVM)的故障分类模型。首先,采用主成分分析(PCA)法对油中溶解气体体积数据降维,去除冗余信息;然后,通过引入Singer混沌映... 为解决通过油中溶解气体诊断变压器故障精确度不高的问题,提出了一种改进北方苍鹰优化(INGO)算法优化支持向量机(SVM)的故障分类模型。首先,采用主成分分析(PCA)法对油中溶解气体体积数据降维,去除冗余信息;然后,通过引入Singer混沌映射、改进的野马算法搜索机制、Lévy飞行策略多种方法改进北方苍鹰优化算法,再利用INGO算法对SVM核心参数进行优化;最后,将处理后的数据输入到INGO-SVM故障诊断模型中。结果表明,其诊断平均准确率为93.5%,与NGO、GWO、AO优化SVM相比,诊断平均准确率分别提升了3.34%、7.04%、10.12%。同时,该模型也优于极限学习机(ELM)、概率神经网络(PNN)、随机森林(RF)典型分类模型,验证了所建立的变压器故障诊断模型具有更高的精度和泛化能力。 展开更多
关键词 变压器 故障诊断 数据处理 北方苍鹰优化算法 支持向量机
在线阅读 下载PDF
基于NGO-VMD和改进GoogLeNet的齿轮箱故障诊断方法 被引量:2
16
作者 李俊卿 刘若尧 何玉灵 《机床与液压》 北大核心 2024年第12期193-201,共9页
目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VM... 目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VMD去除故障信号中的噪声;对原始GoogLeNet的结构进行合理删减,并利用延迟丢弃法、可训练的ReLU函数(TReLU)对其改进;最后,将去噪后的故障信号转换为二维图作为改进GoogLeNet的输入数据进行网络的训练及分类,得到故障诊断结果。实验结果表明:与其他降噪方法相比,NGO-VMD方法的降噪效果明显,能显著提高故障诊断的准确率;与常见的卷积神经网络相比,提出的改进GoogLeNet能进一步提高故障诊断的准确率,达到了97.2%。 展开更多
关键词 变分模态分解(VMD) 北方苍鹰优化(NGO)算法 改进GoogLeNet 齿轮箱故障诊断
在线阅读 下载PDF
基于SSA-VMD-INGO-RF的短期风电功率预测 被引量:2
17
作者 汪繁荣 梅涛 +2 位作者 张旭东 汪筠涵 肖悦 《现代电子技术》 北大核心 2024年第24期88-96,共9页
为解决风电功率输出的不确定性、弱化电网波动以及电网的提质增效等问题,提出一种基于变分模态分解(VMD)、Piecewise混沌映射、北方苍鹰优化(NGO)算法和随机森林(RF)的组合模型。该模型采用麻雀搜索算法(SSA)对VMD核心参数(K值和惩罚系... 为解决风电功率输出的不确定性、弱化电网波动以及电网的提质增效等问题,提出一种基于变分模态分解(VMD)、Piecewise混沌映射、北方苍鹰优化(NGO)算法和随机森林(RF)的组合模型。该模型采用麻雀搜索算法(SSA)对VMD核心参数(K值和惩罚系数α)进行寻优,通过SSA-VMD将原始功率序列分解为多个有限带宽的特征模态分量,以降低原始数据的复杂度和非平稳性对预测精度的影响;然后,构建模态分量并在改进的北方苍鹰算法优化随机森林中进行预测;最后,将各分量预测结果叠加,得到最终预测值。以内蒙古某风电场的实测数据为研究对象,将所提组合模型与另外6种模型进行比较。结果表明,所设计模型预测结果平均绝对百分比误差(MAPE)为1.734%,均方根误差为0.068 MW,R^(2)为0.992,证明了该模型的有效性。 展开更多
关键词 短期风电功率预测 北方苍鹰算法 Piecewise混沌映射 随机森林 变分模态分解 麻雀搜索算法
在线阅读 下载PDF
基于ICEEMDAN多尺度熵与NGO-HKELM的转子故障诊断 被引量:4
18
作者 陆水 李振鹏 +2 位作者 李军 颜东梅 黄福川 《组合机床与自动化加工技术》 北大核心 2024年第4期175-180,共6页
针对电机转子故障信号非平稳、敏感的故障特征不能有效提取,传统分类器参数智能优化算法存在优化速度慢、调整参数多、易陷入局部最优等问题提出基于ICEEMDAN-MSE-KPCA与NGO-HKELM优化的转子故障诊断方法。首先,采用改进的自适应噪声完... 针对电机转子故障信号非平稳、敏感的故障特征不能有效提取,传统分类器参数智能优化算法存在优化速度慢、调整参数多、易陷入局部最优等问题提出基于ICEEMDAN-MSE-KPCA与NGO-HKELM优化的转子故障诊断方法。首先,采用改进的自适应噪声完全集合经验模态分解(improved complete empirical mode decomposition with adaptive noise,ICEEMDAN)方法对转子振动信号进行分解和重构;计算重构信号的多尺度样本熵(multiscale sample entropy,MSE),形成特征向量,通过核主成分分析(kernel principal component analysis,KPCA)方法对高维的特征向量进行降维;最后,将降维后的特征向量输入北方苍鹰算法(northern goshawk optimization,NGO)优化的混合核极限学习机(hybrid extreme learning machine,HKELM)进行转子故障分类。研究结果表明,基于ICEEMDAN-MSE-KPCA与NGO-HKELM优化的转子故障诊断模型,平均识别准确率可达97.7273%,平均寻优时间为1.0681 s,收敛速度快、准确率高以及分类效果好。 展开更多
关键词 改进的ICEEMDAN 多尺度样本熵 北方苍鹰算法 混合核极限学习机 转子故障诊断
在线阅读 下载PDF
基于小波阈值降噪算法的滚动轴承故障诊断 被引量:2
19
作者 竺德 李鑫 +2 位作者 高清维 卢一相 孙冬 《安徽大学学报(自然科学版)》 CAS 北大核心 2024年第4期50-56,共7页
滚动轴承因平稳的运行特性广泛用于工业生产领域,其安全稳定运行对工业生产有重要意义.针对滚动轴承的故障诊断问题,提出基于小波阈值降噪(wavelet threshold denoising,简称WTD)算法.研究结果表明:相对于其他3种算法,WTD算法具有较强... 滚动轴承因平稳的运行特性广泛用于工业生产领域,其安全稳定运行对工业生产有重要意义.针对滚动轴承的故障诊断问题,提出基于小波阈值降噪(wavelet threshold denoising,简称WTD)算法.研究结果表明:相对于其他3种算法,WTD算法具有较强的故障诊断能力.因此,WTD算法具有有效性. 展开更多
关键词 滚动轴承 故障诊断 小波阈值降噪算法 调幅调频模型 北方苍鹰优化算法 支持向量机
在线阅读 下载PDF
基于改进北方苍鹰优化随机配置网络的网络流量预测模型 被引量:2
20
作者 王堃 李少波 +1 位作者 何玲 周鹏 《计算机工程与科学》 CSCD 北大核心 2024年第7期1245-1255,共11页
网络流量预测作为一种关键技术,能帮助实现网络资源的合理分配、优化网络性能以及提供高效的网络服务。随着网络环境的演变和发展,网络流量的多样性和复杂性增加,为了提高网络流量的预测精度,提出了一种基于改进北方苍鹰优化随机配置网... 网络流量预测作为一种关键技术,能帮助实现网络资源的合理分配、优化网络性能以及提供高效的网络服务。随着网络环境的演变和发展,网络流量的多样性和复杂性增加,为了提高网络流量的预测精度,提出了一种基于改进北方苍鹰优化随机配置网络(CNGO-SCN)的网络流量预测模型。随机配置网络作为一种具有监督机制的增量式模型,在解决大规模数据回归和预测问题方面具有良好的优势。但是,一些超参数的选择影响了随机配置网络的准确性。针对这一问题,利用北方苍鹰算法对影响随机配置网络性能的正则化参数和比例因子进行优化,得到最佳数值。而北方苍鹰算法由于初始种群的随机分布导致种群个体质量不佳,因此引入混沌逻辑映射提升初始解的质量。将优化后的模型应用于英国学术网、欧洲某城市核心网网络流量数据集和合作企业搭建的网络协同制造云平台交换机接口的真实流量数据集,并与多种神经网络模型进行对比,以验证所提模型的网络流量预测能力。实验结果表明,该模型对比其他神经网络模型具有更高的预测精度,在实际应用场景中处理复杂数据时具备更加优秀的预测能力,该模型的预测误差下降了0.9%~99.7%。 展开更多
关键词 网络流量预测 随机配置神经网络 北方苍鹰优化算法 混沌逻辑映射
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部