As a method for testing a sequential circuit efficiently, a scan design is usually used. But, since this design has some drawbacks, a non-scan testable design should be discussed. The testable design can be implemente...As a method for testing a sequential circuit efficiently, a scan design is usually used. But, since this design has some drawbacks, a non-scan testable design should be discussed. The testable design can be implemented by enhancing controllability and observability. This paper discusses a non-scan testable design for a sequential circuit by only focusing the improvement of controllability. The proposed design modifies a circuit so that all the FFs can be directly controlled by primary input lines in a test mode. Experimental results show that we can get a good testability using this method.展开更多
在深亚微米及纳米级集成电路设计过程中,电路的可靠性评估是非常重要的一个环节.该文提出了一种基于差错传播概率矩阵(Error Propagation Probability Matrix,EPPM)的时序电路软错误可靠性评估方法,即先将逻辑门和触发器在当前时钟周期...在深亚微米及纳米级集成电路设计过程中,电路的可靠性评估是非常重要的一个环节.该文提出了一种基于差错传播概率矩阵(Error Propagation Probability Matrix,EPPM)的时序电路软错误可靠性评估方法,即先将逻辑门和触发器在当前时钟周期对差错的传播概率用4种EPPM表示,再利用自定义的矩阵并积运算计算多周期情况下的差错传播概率,最后结合二项分布的特点计算时序电路的可靠度.用ISCAS’89基准电路为对象进行实验,结果表明所提方法是准确和有效的.展开更多
文摘As a method for testing a sequential circuit efficiently, a scan design is usually used. But, since this design has some drawbacks, a non-scan testable design should be discussed. The testable design can be implemented by enhancing controllability and observability. This paper discusses a non-scan testable design for a sequential circuit by only focusing the improvement of controllability. The proposed design modifies a circuit so that all the FFs can be directly controlled by primary input lines in a test mode. Experimental results show that we can get a good testability using this method.
文摘在深亚微米及纳米级集成电路设计过程中,电路的可靠性评估是非常重要的一个环节.该文提出了一种基于差错传播概率矩阵(Error Propagation Probability Matrix,EPPM)的时序电路软错误可靠性评估方法,即先将逻辑门和触发器在当前时钟周期对差错的传播概率用4种EPPM表示,再利用自定义的矩阵并积运算计算多周期情况下的差错传播概率,最后结合二项分布的特点计算时序电路的可靠度.用ISCAS’89基准电路为对象进行实验,结果表明所提方法是准确和有效的.