期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测 被引量:5
1
作者 赵如意 王晓辉 +3 位作者 郑碧煌 李道兴 高毅 郭鹏天 《电网技术》 北大核心 2025年第1期209-222,I0080-I0084,共19页
为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首... 为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。 展开更多
关键词 变量选择 互补集合经验模态分解 特征重构 混合改进优化灰狼算法 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于混合特征选择和IOMA-CNN的变压器故障诊断 被引量:3
2
作者 闵永智 令世文 王果 《电力系统保护与控制》 EI CSCD 北大核心 2024年第23期1-9,共9页
为解决变压器油中溶解气体故障特征种类不足和诊断模型准确率较低的问题,提出一种混合特征选择方法。并利用改进光学显微镜优化算法(improvedopticalmicroscopealgorithm, IOMA)优化卷积神经网络(convolutional neuralnetworks, CNN),... 为解决变压器油中溶解气体故障特征种类不足和诊断模型准确率较低的问题,提出一种混合特征选择方法。并利用改进光学显微镜优化算法(improvedopticalmicroscopealgorithm, IOMA)优化卷积神经网络(convolutional neuralnetworks, CNN),实现变压器故障诊断。首先,基于相关比值法构建30维变压器故障候选特征集,采用混合特征选择方法,通过两次特征选择确定输入集的特征维数。其次,引入Tent混沌映射、自适应t分布变异与动态选择策略改进光学显微镜优化算法(optical microscope algorithm, OMA),提升其寻优性能。然后,利用IOMA算法对CNN模型的学习率、卷积核大小和数量等超参数进行优化。最后,构建IOMA-CNN变压器故障诊断模型并通过算例分析对其性能进行评估。实验表明,所提方法故障诊断准确率达到98.5%。与常规特征选择方法相比,利用混合特征选择方法所选择的输入特征进行故障诊断能够有效提升诊断准确率。相较于其他优化诊断模型,IOMA-CNN具有更高的准确率和更好的稳定性。 展开更多
关键词 变压器 故障诊断 混合特征选择 光学显微镜优化算法 卷积神经网络
在线阅读 下载PDF
基于生产数据的混合流水车间动态调度方法研究 被引量:4
3
作者 顾文斌 刘斯麒 +2 位作者 栗涛 李育鑫 郑堃 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1242-1254,共13页
在智能制造背景下,物联网等信息技术为制造系统积累了大量数据,同时人工智能等先进方法为车间数据分析和实时控制提供了有效手段。因此,针对不相关并行机混合流水车间调度问题,提出了一种基于生产数据的动态调度方法,以实现订单完工时... 在智能制造背景下,物联网等信息技术为制造系统积累了大量数据,同时人工智能等先进方法为车间数据分析和实时控制提供了有效手段。因此,针对不相关并行机混合流水车间调度问题,提出了一种基于生产数据的动态调度方法,以实现订单完工时间最小化。首先以高质量调度方案为基础,从中提取生产特征和调度规则完成样本构建。其次使用Relief F算法过滤冗余生产特征,获得用于训练和预测的调度样本。然后采用融合鲸鱼优化算法的概率神经网络作为调度模型,实现基于调度样本的训练和预测过程。最后,实验结果表明,所提方法具有良好的特征选择能力和较高的预测精度,与其他实时调度方法相比具有更加优越的性能,可以有效地根据车间实时状态指导制造执行过程。 展开更多
关键词 混合流水车间 动态调度 生产特征选择 概率神经网络 鲸鱼优化算法
在线阅读 下载PDF
融入小生境和混合变异策略的鲸鱼优化算法 被引量:5
4
作者 于涛 高岳林 《计算机工程与应用》 CSCD 北大核心 2024年第10期88-104,共17页
鲸鱼优化算法作为一种结构简单的先进优化算法,被用于解决各类学科问题。通过对鲸鱼优化算法进行深入研究,发现该算法存在收敛速度慢、无法跳出局部最优、收敛精度低以及无法平衡全局勘探与局部开发能力等问题。为解决上述问题,提出一... 鲸鱼优化算法作为一种结构简单的先进优化算法,被用于解决各类学科问题。通过对鲸鱼优化算法进行深入研究,发现该算法存在收敛速度慢、无法跳出局部最优、收敛精度低以及无法平衡全局勘探与局部开发能力等问题。为解决上述问题,提出一种融入小生境和混合变异策略的鲸鱼优化算法(whale optimization algorithm integrating niche and hybrid mutation strategy,NHWOA)。该算法通过引入自适应权重,平衡算法全局勘探与局部开发能力,并加快收敛速度;将种群按照相同规模划分成三个小生境并独立寻优,提高种群多样性;采用混合变异策略对种群进行随机扰动,帮助算法跳出局部最优。通过在CEC2017测试套件上对NHWOA进行仿真实验,并将其应用于特征选择问题,验证了NHWOA的先进性和有效性。NHWOA的收敛速度更快,收敛精度更高,并且鲁棒性更好。 展开更多
关键词 鲸鱼优化算法 小生境 混合变异 自适应权重 特征选择
在线阅读 下载PDF
基于混合特征选择和INGO-DHKELM的变压器故障诊断方法 被引量:1
5
作者 李多 张莲 +3 位作者 赵娜 谢文龙 黄伟 季鸿宇 《南方电网技术》 CSCD 北大核心 2024年第8期19-28,共10页
针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit le... 针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit learning machine,DHKELM)实现变压器故障诊断。首先,基于相关比值法构建24维变压器故障特征集,从线性相关和非线性相关的角度出发,采用Pearson相关系数和互信息法,筛除相关性较低的特征。其次,引入Logistic混沌映射、随机反向学习和自适应t分布变异改进NGO算法,提升其寻优性能。然后,利用INGO算法对保留特征进行二次筛选,获得最优输入特征。最后,将极限学习机自动编码器引入混合核极限学习机中,建立DHKELM诊断模型,利用INGO对DHKELM模型初始参数进行优化,完成INGO-DHKELM变压器故障诊断模型的构建。实验表明,与常规特征选择方法相比,利用混合式故障特征选择方法所选择的输入特征进行故障诊断能够有效提升诊断准确率;相较于其他优化型诊断模型,INGO-DHKELM具有更高的准确率和更好的稳定性。 展开更多
关键词 变压器 故障诊断 特征选择 北方苍鹰优化算法 深度混合核极限学习机
在线阅读 下载PDF
基于特征选择的轻量级入侵检测系统 被引量:78
6
作者 陈友 程学旗 +1 位作者 李洋 戴磊 《软件学报》 EI CSCD 北大核心 2007年第7期1639-1651,共13页
基于特征选择的入侵检测系统处理的数据含有大量的冗余与噪音特征,使得系统耗用的计算资源很大,导致系统训练时间长、实时性差,检测效果不好.特征选择算法能够很好地消除冗余和噪音特征,为了提高入侵检测系统的检测速度和效果,对基于特... 基于特征选择的入侵检测系统处理的数据含有大量的冗余与噪音特征,使得系统耗用的计算资源很大,导致系统训练时间长、实时性差,检测效果不好.特征选择算法能够很好地消除冗余和噪音特征,为了提高入侵检测系统的检测速度和效果,对基于特征选择的入侵检测系统进行研究是必要的.综述了这一领域的研究进展,从过滤器、封装器、混合器3种模式对基于特征选择的轻量级入侵检测系统进行分类比较,分析和总结各种系统的优缺点以及它们各自适用的条件,最后指出入侵检测领域特征选择的发展趋势.特征选择不仅可以提升入侵检测系统的性能,而且使得对入侵检测的研究向特征提取算法的方向转移. 展开更多
关键词 特征选择 轻量级入侵检测系统 过滤器 封装器 混合器
在线阅读 下载PDF
一种使用多Filter初始化GA种群的混合特征选择模型 被引量:6
7
作者 高鹏毅 陈传波 +3 位作者 张葵 朱力 胡迎松 李丹 《小型微型计算机系统》 CSCD 北大核心 2012年第11期2379-2384,共6页
特征选择已经是高维数据处理尤其是模式识别领域中的一个关键问题.提出一种混合特征选择模型用于从潜在的相关特征中选择那些最重要的特征.该模型包括两部分:filter部分与wrapper部分.在filter部分,4种不同的Filter方法分别对候选特征... 特征选择已经是高维数据处理尤其是模式识别领域中的一个关键问题.提出一种混合特征选择模型用于从潜在的相关特征中选择那些最重要的特征.该模型包括两部分:filter部分与wrapper部分.在filter部分,4种不同的Filter方法分别对候选特征进行独立排序,在融合后进一步生成综合特征排序,综合排序随后产生遗传算法(GA)的初始种群.在wrapper部分,GA算法根据神经网络的分类准确率对个体(特征子集)进行评价,以便于搜索到最优的特征子集.测试结果表明,该模型不仅能有效地减少特征子集的大小,而且还可以进一步提高分类识别的准确率和效果. 展开更多
关键词 特征选择 遗传算法 神经网络 滤波法 封装法 混合特征选择
在线阅读 下载PDF
直接验证的封装式特征选择方法 被引量:7
8
作者 汪文勇 刘川 +2 位作者 赵强 沈晓明 丘晓彤 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第4期607-615,共9页
封装式特征选择算法可以准确地选择出有价值的特征,但是其评价过程伴随着极大的时间复杂度。为此,该文针对封装式特征选择算法中时间复杂度最高的交叉验证评价环节,提出了可以替代交叉验证的特征集直接评价方法——LW测量。进一步,将该... 封装式特征选择算法可以准确地选择出有价值的特征,但是其评价过程伴随着极大的时间复杂度。为此,该文针对封装式特征选择算法中时间复杂度最高的交叉验证评价环节,提出了可以替代交叉验证的特征集直接评价方法——LW测量。进一步,将该方法与封装式特征选择算法中常用的序列搜索策略相结合,提出了改进的序列前(后)向搜索特征选择算法SFS-LW(SBS-LW)。通过在2个UCI数据集上与传统的基于交叉验证的封装式特征选择算法进行3组对比实验,结果表明该改进特征选择方法具有与传统方法近似的分类精度,但在时间复杂度上则有数倍的改善。 展开更多
关键词 特征选择 序列搜索算法 分类 时间复杂度 封装式方法
在线阅读 下载PDF
一种两阶段的神经网络属性选择方法 被引量:2
9
作者 王继成 黄源 +1 位作者 武港山 张福炎 《广西师范大学学报(自然科学版)》 CAS 2003年第A01期41-45,共5页
神经网络的输入属性选择一直是一个比较困难的问题.由于神经网络反复训练的时间复杂度,Wrap-per方法是不适用的,而单纯使用Filter方法也难以获得很好的分类精度.文中提出了一种两阶段的神经网络属性选择方法,以综合Filter和Wrapper两类... 神经网络的输入属性选择一直是一个比较困难的问题.由于神经网络反复训练的时间复杂度,Wrap-per方法是不适用的,而单纯使用Filter方法也难以获得很好的分类精度.文中提出了一种两阶段的神经网络属性选择方法,以综合Filter和Wrapper两类方法的优势.该方法首先采用基于不一致率的遗传算法GFSIC来删除属性集合中的无关属性,然后采用基于敏感性度量的属性选择算法SBFCV来删除冗余和无用的属性.研究和实验结果表明,该方法可以有效地删除原始数据中的无关和冗余属性,增强神经网络的泛化能力. 展开更多
关键词 属性选择 神经网络 过滤器方法 包装器方法 遗传算法
在线阅读 下载PDF
混合式的K-匿名特征选择算法 被引量:7
10
作者 杨柳 李云 《计算机应用》 CSCD 北大核心 2021年第12期3521-3526,共6页
K-匿名算法通过对数据的泛化、隐藏等手段使得数据达到K-匿名条件,在隐藏特征的同时考虑数据的隐私性与分类性能,可以视为一种特殊的特征选择方法,即K-匿名特征选择。K-匿名特征选择方法结合K-匿名与特征选择的特点使用多个评价准则选... K-匿名算法通过对数据的泛化、隐藏等手段使得数据达到K-匿名条件,在隐藏特征的同时考虑数据的隐私性与分类性能,可以视为一种特殊的特征选择方法,即K-匿名特征选择。K-匿名特征选择方法结合K-匿名与特征选择的特点使用多个评价准则选出K-匿名特征子集。过滤式K-匿名特征选择方法难以搜索到所有满足K-匿名条件的候选特征子集,不能保证得到的特征子集的分类性能最优,而封装式特征选择方法计算成本很大,因此,结合过滤式特征排序与封装式特征选择的特点,改进已有方法中的前向搜索策略,设计了一种混合式K-匿名特征选择算法,使用分类性能作为评价准则选出分类性能最好的K-匿名特征子集。在多个公开数据集上进行实验,结果表明,所提算法在分类性能上可以超过现有算法并且信息损失更小。 展开更多
关键词 混合式 过滤式特征排序 封装式特征选择 特征选择 隐私保护 K-匿名 前向搜索策略
在线阅读 下载PDF
故障特征组合选择方法 被引量:3
11
作者 王新峰 邱静 刘冠军 《数据采集与处理》 CSCD 北大核心 2005年第2期181-185,共5页
特征选择方法主要包括过滤方法和绕封方法。为了利用过滤方法计算简单和绕封方法精度高的优点,提出一种组合过滤和绕封方法的特征选择新方法。该方法首先利用基于互信息准则的过滤方法得到满足一定精度要求的子集后,再采用绕封方法找到... 特征选择方法主要包括过滤方法和绕封方法。为了利用过滤方法计算简单和绕封方法精度高的优点,提出一种组合过滤和绕封方法的特征选择新方法。该方法首先利用基于互信息准则的过滤方法得到满足一定精度要求的子集后,再采用绕封方法找到最后的优化特征子集。由于遗传算法在组合优化问题上的成功应用,对特征子集寻优采用了遗传算法。在数值仿真和轴承故障特征选择中,采用新方法在保证诊断精度的同时,可以节省大量选择时间。组合特征选择方法有较好的寻优特征子集的能力,能够节省选择时间,具有高效、高精度的双重优点。 展开更多
关键词 特征选择 过滤方法 绕封方法 互信息 遗传算法
在线阅读 下载PDF
基于混合粒子群优化算法的故障特征选择 被引量:10
12
作者 李虹 熊诗波 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第15期4041-4044,共4页
通过将遗传算法和粒子群优化算法相结合,提出了混合粒子群优化算法(HPSO),用于机械故障特征选择问题。此方法在对粒子进行优化的同时选择部分优良的粒子进行遗传交叉和变异操作,增强了算法跳出局部极值的能力。某导弹运输车减速器齿轮... 通过将遗传算法和粒子群优化算法相结合,提出了混合粒子群优化算法(HPSO),用于机械故障特征选择问题。此方法在对粒子进行优化的同时选择部分优良的粒子进行遗传交叉和变异操作,增强了算法跳出局部极值的能力。某导弹运输车减速器齿轮故障特征选择试验结果表明HPSO可以快速、有效地求得优化特征集,其性能优于PSO和GA。 展开更多
关键词 特征集 特征选择 混合粒子群优化算法 遗传算法
在线阅读 下载PDF
基于EMD与GA-SVM的轴承故障诊断 被引量:3
13
作者 李兵 张培林 +2 位作者 米双山 刘东升 任国全 《机械强度》 CAS CSCD 北大核心 2010年第3期-,共5页
特征提取与特征选择是实现轴承故障诊断的关键。针对特征提取,首先将轴承振动加速度信号进行经验模态分解(empirical mode decomposition,简称EMD),得到一组固有模态函数(intrinsic mode function,简称IMF),计算各IMF的能量和IMF矩阵的... 特征提取与特征选择是实现轴承故障诊断的关键。针对特征提取,首先将轴承振动加速度信号进行经验模态分解(empirical mode decomposition,简称EMD),得到一组固有模态函数(intrinsic mode function,简称IMF),计算各IMF的能量和IMF矩阵的奇异值分布,采用Shannon熵、Renyi熵度量能量和奇异值分布,同时提取原信号的部分统计特征共同构成原始特征子集;针对特征选择,采用遗传算法(genetic algorithm,简称GA)和最小二乘支持向量机(least square supportvector machine,简称LS-SVM)的Wrapper方法选择最优特征子集。在实际轴承故障诊断中的应用,表明文中所提方法的有效性。 展开更多
关键词 轴承 故障诊断 特征提取 特征选择 经验模态分解 Shannon熵 RENYI熵 遗传算法 最小二乘支持向量机 wrapper
在线阅读 下载PDF
混合粒子群优化算法选择特征的网络入侵检测 被引量:10
14
作者 袁开银 费岚 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第2期309-314,共6页
针对网络入侵特征优化问题,提出一种混合粒子群优化算法选择特征的网络入侵检测模型,以提高网络入侵检测率.首先将网络入侵检测率作为特征选择的目标函数,网络状态特征作为约束条件建立相应的数学模型,然后采用混合粒子群算法找到最优... 针对网络入侵特征优化问题,提出一种混合粒子群优化算法选择特征的网络入侵检测模型,以提高网络入侵检测率.首先将网络入侵检测率作为特征选择的目标函数,网络状态特征作为约束条件建立相应的数学模型,然后采用混合粒子群算法找到最优特征子集,最后采用支持向量机作为分类器建立入侵检测模型,并在MATLAB2012平台上采用KDD1999数据进行验证.实验结果表明,该模型可高效地查询到最优特征子集,入侵检测率和效率均优于经典入侵检测模型. 展开更多
关键词 互联网络 选择特征 入侵检测模型 分类器 混合粒子群优化算法
在线阅读 下载PDF
基于差分进化的两阶段文本特征选择算法 被引量:6
15
作者 肖晓丽 吴瑶 +1 位作者 周锡玲 廖卓凡 《计算机工程》 CAS CSCD 北大核心 2019年第2期303-309,314,共8页
为降低文本特征空间维度,提高数据挖掘处理数据的效率,提出两阶段文本特征选择算法。结合方差和平均中位数2种方法构建高相关性的特征子集进行初步降维,并将其作为差分进化算法的初始特征种群。利用特征词的累计词频和文档频率设计适应... 为降低文本特征空间维度,提高数据挖掘处理数据的效率,提出两阶段文本特征选择算法。结合方差和平均中位数2种方法构建高相关性的特征子集进行初步降维,并将其作为差分进化算法的初始特征种群。利用特征词的累计词频和文档频率设计适应度函数,将多个特征差向量和局部最优特征引入变异操作中,增加特征子集的扰动性,加快差分进化算法的收敛速度,获得最优特征子集。在WebKB和Reuters-21578数据集上进行实验,结果表明,该算法在准确率、召回率和F1值上均优于TDM5、MADAC等算法,能够降低文本特征空间的维度,提高文本聚类效果。 展开更多
关键词 混合特征选择 降维 差分进化算法 方差 平均中位数 文本聚类
在线阅读 下载PDF
基于绕封模型的故障特征选择方法研究 被引量:1
16
作者 王新峰 邱静 刘冠军 《兵工学报》 EI CAS CSCD 北大核心 2005年第5期685-689,共5页
在机械故障诊断中,基于原始大特征量的故障状态识别会导致识别精度的下降。特征选择可以去除原始特征中的冗余特征,提高诊断精度。但以前广泛应用的基于过滤模型的特征选择方法不能满足进一步提高精度的要求。针对此问题,提出使用基于... 在机械故障诊断中,基于原始大特征量的故障状态识别会导致识别精度的下降。特征选择可以去除原始特征中的冗余特征,提高诊断精度。但以前广泛应用的基于过滤模型的特征选择方法不能满足进一步提高精度的要求。针对此问题,提出使用基于绕封模型的故障特征选择方法,它采用遗传算法对特征集寻优,样本划分法进行错误率预测估计和BP神经网络学习算法进行分类。轴承诊断实例证明,此方法有较好的寻优特征子集的能力,可以提高系统的诊断精度。 展开更多
关键词 信息处理技术 特征选择 绕封模型 遗传算法 神经网络
在线阅读 下载PDF
基于混合采样和特征选择的改进随机森林算法研究 被引量:21
17
作者 汪力纯 刘水生 《南京邮电大学学报(自然科学版)》 北大核心 2022年第1期81-89,共9页
随机森林算法是根据Bagging抽样和随机特征子集划分策略,由多棵决策树组成的集成算法。与其他分类算法相比,随机森林算法有更高的分类精度、更低的泛化误差以及训练速度快等特点,因此在数据挖掘领域得到了多方面的应用。然而随机森林算... 随机森林算法是根据Bagging抽样和随机特征子集划分策略,由多棵决策树组成的集成算法。与其他分类算法相比,随机森林算法有更高的分类精度、更低的泛化误差以及训练速度快等特点,因此在数据挖掘领域得到了多方面的应用。然而随机森林算法在分类预测特征维度高且不平衡的数据时,分类性能受到了极大限制。为了更好地处理高维不平衡数据,文中提出了一种基于混合采样和特征选择的改进随机森林算法(Hybrid Samping&Feature Selection Random Forest,HF_RF)。该算法首先从数据层面出发,通过SMOTE算法和随机欠采样相结合的方式对高维不平衡数据集进行预处理,同时引入聚类算法对SMOTE算法进行改进,提高对负类样本的处理性能;然后从算法层面出发,通过ReliefF算法对平衡后的高维数据赋予不同的权值,剔除不相关和冗余特征,对高维数据进行维度约简;最后采用加权投票原则进一步提高算法的分类性能。实验结果显示,改进后的算法与原算法相比,在处理高维不平衡数据方面的各评价指标更高,证明HF_RF算法对于高维不平衡数据的分类性能高于传统随机森林算法。 展开更多
关键词 随机森林 混合采样 特征选择 高维不平衡数据 HF_RF算法
在线阅读 下载PDF
改进的森林优化特征选择算法在信用评估中的应用 被引量:4
18
作者 黄宇航 宋友 王宝会 《计算机科学》 CSCD 北大核心 2023年第S01期521-526,共6页
信用评估是金融领域的一个关键问题,它可以预测出一个用户是否存在拖欠风险,从而减少坏账损失。信用评估的关键挑战之一就是数据集存在着大量无效或冗余特征。为了解决该问题,提出了一种改进的森林优化特征选择算法(Improved Feature Se... 信用评估是金融领域的一个关键问题,它可以预测出一个用户是否存在拖欠风险,从而减少坏账损失。信用评估的关键挑战之一就是数据集存在着大量无效或冗余特征。为了解决该问题,提出了一种改进的森林优化特征选择算法(Improved Feature Selection using Forest Optimization Algorithm,IFSFOA)。该算法针对原始算法FSFOA的不足,在初始化阶段使用基于卡方校验的初始化策略代替随机化初始,提升算法寻优的能力;在局部播种阶段利用多层级变异策略,优化局部搜索能力,解决FSFOA的搜索空间受限和局部性问题;在更新候选森林时,使用贪婪选取策略挑选优质树,淘汰劣质树,收敛搜索发散过程。最后在涵盖了低维、中维和高维的公开信用评估数据集上设置对比实验,结果表明IFSFOA在分类和维度缩减方面的能力的综合表现均优于FSFOA和近年提出的较为高效的特征选择算法,验证了IFSFOA的有效性。 展开更多
关键词 森林优化算法 特征选择 信用评估 演化计算 包裹式方法
在线阅读 下载PDF
改进特征波段选取和混合集成建模的东北粳稻叶绿素含量估算 被引量:5
19
作者 刘潭 许童羽 +3 位作者 于丰华 袁青云 郭忠辉 徐博 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第8期2556-2564,共9页
利用光谱信息快速、无损和准确的检测水稻冠层叶片叶绿素含量,对水稻的长势评估、精准施肥、科学管理都具有非常重要的现实意义。以东北粳稻为研究对象,以小区试验为基础,获取关键生长期的水稻冠层高光谱数据。首先采用标准正态变量校正... 利用光谱信息快速、无损和准确的检测水稻冠层叶片叶绿素含量,对水稻的长势评估、精准施肥、科学管理都具有非常重要的现实意义。以东北粳稻为研究对象,以小区试验为基础,获取关键生长期的水稻冠层高光谱数据。首先采用标准正态变量校正法(SNV)对光谱数据进行预处理,针对处理后光谱数据,以随机蛙跳(RF)算法为基础,结合相关系数分析法(CC)和续投影算法(SPA),提出一种融合两种初选波段的改进型随机蛙跳算法(fpb-RF)筛选叶绿素含量的特征波段,并分别与标准RF,CC和SPA方法进行对比。以提取的特征波段作为输入,结合线性模型和非线性模型各自优势,提出一种高斯过程回归(GPR)补偿偏最小二乘(PLSR)的叶绿素含量混合预测模型(GPR-P):利用PLSR法对水稻叶绿素含量初步预测,得到叶绿素含量的线性趋势,然后利用具有较好非线性逼近能力的GPR对PLSR模型偏差进行预测,两者叠加得到最终预测值。为了验证所提方法优越性,以不同方法提取的特征波段作为输入,分别建立PLSR、最小二乘支持向量机(LSSVM)、BP神经网络预测模型。结果表明:相同预测模型条件下,改进fpb-RF算法提取特征波段作为输入可较好的降低模型复杂性、提高模型预测性能,各模型测试集的决定系数(R_(P)^(2))和训练集的决定系数(R_(C)^(2))均高于0.7047。另外,在各算法提取特征波段进行建模时,GPR-P模型的R_(C)^(2)和R^(2)P均高于0.7553,其中,采用fpb-RF方法提取的特征波段作为输入建立的GPR-P模型预测精度最高,R_(C)^(2)和R_(P)^(2)分别为0.7815和0.7796,RMSEC和RMSEP分别为0.9041和0.9283 mg·L^(-1),可为东北粳稻叶绿素含量的检测与评估提供有价值的参考和借鉴作用。 展开更多
关键词 水稻 叶绿素含量 光谱分析 特征波段提取 fpb-RF算法 混合预测模型
在线阅读 下载PDF
基于遗传乌燕鸥算法的同步优化特征选择 被引量:32
20
作者 贾鹤鸣 李瑶 孙康健 《自动化学报》 EI CAS CSCD 北大核心 2022年第6期1601-1615,共15页
针对传统支持向量机方法用于数据分类存在分类精度低的不足问题,将支持向量机分类方法与特征选择同步结合,并利用智能优化算法对算法参数进行优化研究.首先将遗传算法(Genetic algorithm,GA)和乌燕鸥优化算法(Sooty tern optimization a... 针对传统支持向量机方法用于数据分类存在分类精度低的不足问题,将支持向量机分类方法与特征选择同步结合,并利用智能优化算法对算法参数进行优化研究.首先将遗传算法(Genetic algorithm,GA)和乌燕鸥优化算法(Sooty tern optimization algorithm,STOA)进行混合,先通过对平均适应度值进行评估,当个体的适应度函数值小于平均值时采用遗传算法对其进行局部搜索的加强,否则进行乌燕鸥本体优化过程,同时将支持向量机内核函数和特征选择目标共同作为优化对象,利用改进后的STOA-GA寻找最适应解,获得所选的特征分类结果.其次,通过16组经典UCI数据集和实际乳腺癌数据集进行数据分类研究,在最佳适应度值、所选特征个数、特异性、敏感性和算法耗时方面进行对比研究,实验结果表明,该算法可以更加准确地处理数据,避免冗余特征干扰,在数据挖掘领域具有更广阔的工程应用前景. 展开更多
关键词 乌燕鸥优化算法 混合优化 特征选择 支持向量机 数据分类
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部