The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ...The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems.展开更多
The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonli...The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan.展开更多
This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems...This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems. Based on the Taylor ex-pand technology, an equivalent model in affine-like form is derived for the original nonaffine nonlinear system. Then a direct adap-tive neural network (NN) control er is implemented based on the affine-like model. By finding an orthogonal matrix to tune the NN weights, the closed-loop system is proven to be semiglobal y uni-formly ultimately bounded. The σ-modification technique is used to remove the requirement of persistence excitation during the adaptation. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.展开更多
An overview on nonlinear reconfigurable flight control approaches that have been demonstrated in flight-test or highfidelity simulation is presented. Various approaches for reconfigurable flight control systems are co...An overview on nonlinear reconfigurable flight control approaches that have been demonstrated in flight-test or highfidelity simulation is presented. Various approaches for reconfigurable flight control systems are considered, including nonlinear dynamic inversion, parameter identification and neural network technologies, backstepping and model predictive control approaches. The recent research work, flight tests, and potential strength and weakness of each approach are discussed objectively in order to give readers and researchers some reference. Finally, possible future directions and open problems in this area are addressed.展开更多
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was...Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme.展开更多
1 M-P神经元模型的工作原理和几何意义
1943年,MoCulloch和Pitts[1]根据神经元传递规律,第一次提出了神经元的数学模型.M-P神经元模型一直沿用至今,它对神经网络的发展起到了奠基性的作用.每个神经元的状态由M-P方程决定:S=f(∑W X -θ)...1 M-P神经元模型的工作原理和几何意义
1943年,MoCulloch和Pitts[1]根据神经元传递规律,第一次提出了神经元的数学模型.M-P神经元模型一直沿用至今,它对神经网络的发展起到了奠基性的作用.每个神经元的状态由M-P方程决定:S=f(∑W X -θ),θ为阈值,f为激励函数,一般取符号函数.令:它代表了n维空间中,以X为坐标变量,以W为坐标系数,θ为常数项的一个超平面.当样本点X落入超平面的正半区,即I(X)>0时,有f(I)=1;当样本点X落入超平面的负半区,即I(X)<0时,有f(I)=0.从分类的角度看,一个神经元按输入将样本划分成为两类(0和1).现在广泛使用的BP模型采用Sigmoid函数作为激励函数,但是它没有改变神经元分类的本质.神经网络实际上就是多个神经元组织起来的一种网状结构.展开更多
基于台架采集数据,采用外部输入非线性自回归(nonlinear autoregressive model with exogenous input,NARX)神经网络建立了具备瞬态特性的柴油机排气温度计算模型作为虚拟传感器,并采用并发式训练方法对模型进行训练。将结果与前馈神经...基于台架采集数据,采用外部输入非线性自回归(nonlinear autoregressive model with exogenous input,NARX)神经网络建立了具备瞬态特性的柴油机排气温度计算模型作为虚拟传感器,并采用并发式训练方法对模型进行训练。将结果与前馈神经网络、长短期记忆网络(long short term memory,LSTM)神经网络及量产发动机的排温传感器采集结果进行对比。经验证,稳态工况下,两种神经网络均能达到较高精度;欧洲瞬态循环(European transient cycle,ETC)工况下,NARX神经网络计算温度的最大偏差为6.6℃,量产发动机排温传感器测得温度最大偏差为45.9℃。NARX神经网络所需的计算时间约为现有电控单元排温模型的2.5倍。展开更多
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and...In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.展开更多
The electrode regulator system is a complex system with many variables, strong coupling and strong nonlinearity, while conventional control methods such as proportional integral derivative (PID) can not meet the req...The electrode regulator system is a complex system with many variables, strong coupling and strong nonlinearity, while conventional control methods such as proportional integral derivative (PID) can not meet the requirements. A robust adaptive neural network controller (RANNC) for electrode regulator system was proposed. Artificial neural networks were established to learn the system dynamics. The nonlinear control law was derived directly based on an input-output approximating method via the Taylor expansion, which avoids complex control development and intensive computation. The stability of the closed-loop system was established by the Lyapunov method. The current fluctuation relative percentage is less than ±8% and heating rate is up to 6.32 ℃/min when the proposed controller is used. The experiment results show that the proposed control scheme is better than inverse neural network controller (INNC) and PID controller (PIDC).展开更多
基金supported by the Brain Korea 21 PLUS Project,National Research Foundation of Korea(NRF-2013R1A2A2A01068127NRF-2013R1A1A2A10009458)Jiangsu Province University Natural Science Research Project(13KJB510003)
文摘The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems.
基金The project was supported by the National Natural Science Foundation of China (60375014) and the Postdoctoral Sci-ence Foundation of China
文摘The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan.
基金supported by the Fundamental Research Funds for Central Universities(N100604002)
文摘This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems. Based on the Taylor ex-pand technology, an equivalent model in affine-like form is derived for the original nonaffine nonlinear system. Then a direct adap-tive neural network (NN) control er is implemented based on the affine-like model. By finding an orthogonal matrix to tune the NN weights, the closed-loop system is proven to be semiglobal y uni-formly ultimately bounded. The σ-modification technique is used to remove the requirement of persistence excitation during the adaptation. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.
基金supported by the National Natural Science Foundation of China (61273171)the National Aerospace Science Foundation of China (2011ZA52009)
文摘An overview on nonlinear reconfigurable flight control approaches that have been demonstrated in flight-test or highfidelity simulation is presented. Various approaches for reconfigurable flight control systems are considered, including nonlinear dynamic inversion, parameter identification and neural network technologies, backstepping and model predictive control approaches. The recent research work, flight tests, and potential strength and weakness of each approach are discussed objectively in order to give readers and researchers some reference. Finally, possible future directions and open problems in this area are addressed.
文摘Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme.
文摘1 M-P神经元模型的工作原理和几何意义
1943年,MoCulloch和Pitts[1]根据神经元传递规律,第一次提出了神经元的数学模型.M-P神经元模型一直沿用至今,它对神经网络的发展起到了奠基性的作用.每个神经元的状态由M-P方程决定:S=f(∑W X -θ),θ为阈值,f为激励函数,一般取符号函数.令:它代表了n维空间中,以X为坐标变量,以W为坐标系数,θ为常数项的一个超平面.当样本点X落入超平面的正半区,即I(X)>0时,有f(I)=1;当样本点X落入超平面的负半区,即I(X)<0时,有f(I)=0.从分类的角度看,一个神经元按输入将样本划分成为两类(0和1).现在广泛使用的BP模型采用Sigmoid函数作为激励函数,但是它没有改变神经元分类的本质.神经网络实际上就是多个神经元组织起来的一种网状结构.
文摘基于台架采集数据,采用外部输入非线性自回归(nonlinear autoregressive model with exogenous input,NARX)神经网络建立了具备瞬态特性的柴油机排气温度计算模型作为虚拟传感器,并采用并发式训练方法对模型进行训练。将结果与前馈神经网络、长短期记忆网络(long short term memory,LSTM)神经网络及量产发动机的排温传感器采集结果进行对比。经验证,稳态工况下,两种神经网络均能达到较高精度;欧洲瞬态循环(European transient cycle,ETC)工况下,NARX神经网络计算温度的最大偏差为6.6℃,量产发动机排温传感器测得温度最大偏差为45.9℃。NARX神经网络所需的计算时间约为现有电控单元排温模型的2.5倍。
文摘In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.
基金Project(N100604002) supported by the Fundamental Research Funds for Central Universities of ChinaProject(61074074) supported by the National Natural Science Foundation of China
文摘The electrode regulator system is a complex system with many variables, strong coupling and strong nonlinearity, while conventional control methods such as proportional integral derivative (PID) can not meet the requirements. A robust adaptive neural network controller (RANNC) for electrode regulator system was proposed. Artificial neural networks were established to learn the system dynamics. The nonlinear control law was derived directly based on an input-output approximating method via the Taylor expansion, which avoids complex control development and intensive computation. The stability of the closed-loop system was established by the Lyapunov method. The current fluctuation relative percentage is less than ±8% and heating rate is up to 6.32 ℃/min when the proposed controller is used. The experiment results show that the proposed control scheme is better than inverse neural network controller (INNC) and PID controller (PIDC).