期刊文献+
共找到19,913篇文章
< 1 2 250 >
每页显示 20 50 100
Reliability of multi-dimensional network systems with nodes having stochastic connection ranges
1
作者 FU Yuqiang MA Xiaoyang ZHAO Fei 《Journal of Systems Engineering and Electronics》 2025年第4期1017-1023,共7页
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with... This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure. 展开更多
关键词 multi-dimensional network multi-valued decision diagram stochastic connection range reliability analysis impor-tance measure.
在线阅读 下载PDF
Projective synchronization control and simulation of drive system and response network
2
作者 LI De-kui 《兰州大学学报(自然科学版)》 北大核心 2025年第2期208-214,共7页
Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev... Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller. 展开更多
关键词 pinning control projective synchronization drive system response network
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
3
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
A method for modeling and evaluating the interoperability of multi-agent systems based on hierarchical weighted networks
4
作者 DONG Jingwei TANG Wei YU Minggang 《Journal of Systems Engineering and Electronics》 2025年第3期754-767,共14页
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight... Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies. 展开更多
关键词 complex network agent INTEROPERABILITY susceptible-infected-recovered model dynamic Bayesian network
在线阅读 下载PDF
TDNN:A novel transfer discriminant neural network for gear fault diagnosis of ammunition loading system manipulator
5
作者 Ming Li Longmiao Chen +3 位作者 Manyi Wang Liuxuan Wei Yilin Jiang Tianming Chen 《Defence Technology(防务技术)》 2025年第3期84-98,共15页
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau... The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods. 展开更多
关键词 Manipulator gear fault diagnosis Reciprocating machine Domain adaptation Pseudo-label training strategy Transfer discriminant neural network
在线阅读 下载PDF
PM_(2.5) probabilistic forecasting system based on graph generative network with graph U-nets architecture
6
作者 LI Yan-fei YANG Rui +1 位作者 DUAN Zhu LIU Hui 《Journal of Central South University》 2025年第1期304-318,共15页
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ... Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction. 展开更多
关键词 PM_(2.5)interval forecasting graph generative network graph U-Nets sparse Bayesian regression kernel density estimation spatial-temporal characteristics
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
7
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
8
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis Deep learning Multi-scale convolution Open-circuit Convolutional neural network
在线阅读 下载PDF
Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
9
作者 YUAN Yuqi ZHOU Di +1 位作者 LI Junlong LOU Chaofei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期451-462,共12页
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST... In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model. 展开更多
关键词 long-short-term memory(LSTM)neural network extended Kalman filter(EKF) rolling training time-varying parameters estimation missile dual control system
在线阅读 下载PDF
Weapon system selection based on trust network and probabilistic hesitant fuzzy entropy
10
作者 JIA Qingyang DOU Yajie +2 位作者 XIANG Nan MA Yufeng YANG Kewei 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1469-1481,共13页
In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is p... In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is proposed.Firstly,we introduce the concept of probability and fuzzy entropy to mea-sure the ambiguity,hesitation and uncertainty of probabilistic hesitant fuzzy elements(PHFEs).Sequentially,the expert trust network is constructed,and the importance of each expert in the network can be obtained by calculating the cumulative trust value under multiple trust propagation paths,so as to obtain the expert weight vector.Finally,we put forward an MADM method combining the probabilistic hesitant fuzzy entropy and grey rela-tion analysis(GRA)model,and an illustrative case is employed to prove the feasibility and effectiveness of the method when solving the weapon system selection decision-making problem. 展开更多
关键词 weapon system selection multi-attribute decision making(MADM) probabilistic hesitant fuzzy set(PHFS) trust network
在线阅读 下载PDF
Multi-QoS routing algorithm based on reinforcement learning for LEO satellite networks 被引量:1
11
作者 ZHANG Yifan DONG Tao +1 位作者 LIU Zhihui JIN Shichao 《Journal of Systems Engineering and Electronics》 2025年第1期37-47,共11页
Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa... Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link. 展开更多
关键词 low Earth orbit(LEO)satellite network reinforcement learning multi-quality of service(QoS) routing algorithm
在线阅读 下载PDF
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
12
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
Exploration of the Biomedical Functions and Applications of Metal-Polyphenol Network Structures
13
作者 LI Zhining XU Liangge +1 位作者 ZHANG Yuli WANG Chen 《有色金属(中英文)》 北大核心 2025年第9期1460-1482,共23页
The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biom... The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biomedical challenges.Nanomaterials possess distinctive structures and properties.Through the exploration of the fabrication of emerging nanomedicines,multiple functions can be integrated to enable more precise diagnosis and treatment,thereby compensating for the limitations of traditional treatment modalities.Among various substances,polyphenols are natural organic compounds classified as plant secondary metabolites and are ubiquitously present in vegetables,teas,and other plants.Polyphenols are rich in active groups,including hydroxyl,carboxyl,amino,and conjugated double bonds.They exhibit robust adhesion,antioxidant,anti-inflammatory,and antibacterial biological activities and are extensively applied in pharmaceutical formulations.Additionally,polyphenols are characterized by their low cost,ready availability,and do not necessitate intricate chemical synthesis processes.Nevertheless,when natural polyphenol-based nanomedicines are utilized in isolation,they encounter several issues.These include poor water solubility,feeble stability,low bioavailability,the requirement for high dosages,and difficulties in precisely reaching the site of action.To address these concerns,researchers have developed nanomedicines by combining metal ions and functional ligands through metal coordination strategies.Nanomaterials,owing to their unique electronic and optical properties,have been successfully introduced into the realm of medical biology.Nano preparations not only enhance the stability of natural products but also endow them with targeting capabilities,thus enabling precise drug delivery.Polyphenols can further synergize with metal ions,anti-cancer drugs,or photosensitizers via supramolecular interactions to achieve multifunctional synergistic therapies,such as targeted drug delivery,efficacy enhancement,and the construction of engineering scaffolds.Metal-Polyphenol Coordination Polymers(MPCPs),composed of metal ions and phenolic ligands,are regarded as ideal nanoplatforms for disease diagnosis and treatment.In recent years,MPCPs have attracted extensive research in the biomedical field on account of their advantages,including facile synthesis,adjustable structure,excellent biocompatibility,and pH responsiveness.In this review,the classification and preparation strategies of MPCPs were systematically presented.Subsequently,their remarkable achievements in biomedical domains,such as bioimaging,biosensing,drug delivery,tumor therapy,and antimicrobial applications were highlighted.Finally,the principal limitations and prospects of MPCPs were comprehensi vely discussed. 展开更多
关键词 metal polyphenol network NANOTECHNOLOGY NANO-COPPER tumor therapy
在线阅读 下载PDF
Estimation of peer pressure in dynamic homogeneous social networks
14
作者 Jie Liu Pengyi Wang +1 位作者 Jiayang Zhao Yu Dong 《中国科学技术大学学报》 北大核心 2025年第5期36-49,35,I0001,I0002,共17页
Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision p... Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends.However,peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model.For this reason,we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks.The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios.To estimate peer pressure in the model,we first present two algorithms based on the initialize expand merge method and the polynomial-time twostage method to estimate homogeneity parameters.Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure.Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error.We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model. 展开更多
关键词 dynamic network game theory HOMOGENEITY peer pressure social interaction
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
15
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
Studies on the anti-hair loss mechanism of Aquilaria sinensis leaf extract by integrated metabolomics and network pharmacology
16
作者 Zhengang Peng Zhengwan Huang +1 位作者 Zhe Liu Xiaoxiao Lin 《日用化学工业(中英文)》 北大核心 2025年第6期767-778,共12页
The anti-hair loss mechanism of Aquilaria sinensis leaf extract(ASE)has been studied by using metabolomics and network pharmacology.Metabolomics was utilized to comprehensively identify the active constituents of ASE,... The anti-hair loss mechanism of Aquilaria sinensis leaf extract(ASE)has been studied by using metabolomics and network pharmacology.Metabolomics was utilized to comprehensively identify the active constituents of ASE,and the network pharmacology was used to elucidate their anti-hair loss mechanism,which was verified by molecular docking technology.572 active compounds were identified from the ASE by metabolomics methods,where there are 1447 corresponding targets and 492 targets related to hair loss,totaling 88 targets.20 core active substances were identified by constructing a network between common targets and active substances,which include vanillic acid,chorionic acid,caffeic acid and apigenin.The five key targets of TNF,TP53,IL6,PPARG,and EGFR were screened out by the PPI network analysis on 88 common targets.The GO and KEGG pathway enrichment analysis showed that the inflammation,hormone balance,cell growth,proliferation,apoptosis,and oxidative stress are involved.Molecular docking studies have confirmed the high binding affinity between core active compounds and key targets.The drug similarity assessment on these core compounds suggested that they have the potential to be used as potential hair loss treatment drugs.This study elucidates the complex molecular mechanism of ASE in treating hair loss,and provides a reference for the future applications in hair care products. 展开更多
关键词 metabolomics network pharmacology hair loss Aquilaria sinensis leaf extract molecular docking
在线阅读 下载PDF
Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
17
作者 LIU Hang ZHU Yu-Xin +6 位作者 GUO Si-Lin PAN Xin-Yun XIE Yuan-Jie LIAO Si-Cong DAI Xin-Wen SHEN Ping XIAO Yu-Bo 《生物化学与生物物理进展》 北大核心 2025年第9期2376-2392,共17页
Objective Traditional Chinese medicine(TCM)constitutes a valuable cultural heritage and an important source of antitumor compounds.Poria(Poria cocos(Schw.)Wolf),the dried sclerotium of a polyporaceae fungus,was first ... Objective Traditional Chinese medicine(TCM)constitutes a valuable cultural heritage and an important source of antitumor compounds.Poria(Poria cocos(Schw.)Wolf),the dried sclerotium of a polyporaceae fungus,was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia.Traditionally recognized for its diuretic,spleen-tonifying,and sedative properties,modern pharmacological studies confirm that Poria exhibits antioxidant,anti-inflammatory,antibacterial,and antitumor activities.Pachymic acid(PA;a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid),isolated from Poria,is a principal bioactive constituent.Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms,though these remain incompletely characterized.Neuroblastoma(NB),a highly malignant pediatric extracranial solid tumor accounting for 15%of childhood cancer deaths,urgently requires safer therapeutics due to the limitations of current treatments.Although PA shows multi-mechanistic antitumor potential,its efficacy against NB remains uncharacterized.This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking,dynamic simulations,and in vitro assays,aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays.Methods This study employed network pharmacology to identify potential targets of PA in NB,followed by validation using molecular docking,molecular dynamics(MD)simulations,MM/PBSA free energy analysis,RT-qPCR and Western blot experiments.Network pharmacology analysis included target screening via TCMSP,GeneCards,DisGeNET,SwissTargetPrediction,SuperPred,and PharmMapper.Subsequently,potential targets were predicted by intersecting the results from these databases via Venn analysis.Following target prediction,topological analysis was performed to identify key targets using Cytoscape software.Molecular docking was conducted using AutoDock Vina,with the binding pocket defined based on crystal structures.MD simulations were performed for 100 ns using GROMACS,and RMSD,RMSF,SASA,and hydrogen bonding dynamics were analyzed.MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex.In vitro validation included RT-qPCR and Western blot,with GAPDH used as an internal control.Results The CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability.GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress,vesicle lumen,and protein tyrosine kinase activity.KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT,MAPK,and Ras signaling pathways.Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1,EGFR,SRC,and HSP90AA1.RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1,EGFR,and SRC while increasing the HSP90AA1 mRNA and protein levels.Conclusion It was suggested that PA may exert its anti-NB effects by inhibiting AKT1,EGFR,and SRC expression,potentially modulating the PI3K/AKT signaling pathway.These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB. 展开更多
关键词 pachymic acid network pharmacology molecular dynamics simulation
在线阅读 下载PDF
Prediction of RNA m6A Methylation Sites in Multiple Tissues Based on Dual-branch Residual Network
18
作者 GUO Xiao-Tian GAO Wei +2 位作者 CHEN Dan LI Hui-Min TAN Xue-Wen 《生物化学与生物物理进展》 北大核心 2025年第11期2900-2915,共16页
Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated ... Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated in diverse pathological conditions.Accurate prediction of m6A sites is critical for elucidating their regulatory mechanisms and informing drug development.However,traditional experimental methods are time-consuming and costly.Although various computational approaches have been proposed,challenges remain in feature learning,predictive accuracy,and generalization.Here,we present m6A-PSRA,a dual-branch residual-network-based predictor that fully exploits RNA sequence information to enhance prediction performance and model generalization.Methods m6A-PSRA adopts a parallel dual-branch network architecture to comprehensively extract RNA sequence features via two independent pathways.The first branch applies one-hot encoding to transform the RNA sequence into a numerical matrix while strictly preserving positional information and sequence continuity.This ensures that the biological context conveyed by nucleotide order is retained.A bidirectional long short-term memory network(BiLSTM)then processes the encoded matrix,capturing both forward and backward dependencies between bases to resolve contextual correlations.The second branch employs a k-mer tokenization strategy(k=3),decomposing the sequence into overlapping 3-mer subsequences to capture local sequence patterns.A pre-trained Doc2vec model maps these subsequences into fixeddimensional vectors,reducing feature dimensionality while extracting latent global semantic information via context learning.Both branches integrate residual networks(ResNet)and a self-attention mechanism:ResNet mitigates vanishing gradients through skip connections,preserving feature integrity,while self-attention adaptively assigns weights to focus on sequence regions most relevant to methylation prediction.This synergy enhances both feature learning and generalization capability.Results Across 11 tissues from humans,mice,and rats,m6A-PSRA consistently outperformed existing methods in accuracy(ACC)and area under the curve(AUC),achieving>90%ACC and>95%AUC in every tissue tested,indicating strong cross-species and cross-tissue adaptability.Validation on independent datasets—including three human cell lines(MOLM1,HEK293,A549)and a long-sequence dataset(m6A_IND,1001 nt)—confirmed stable performance across varied biological contexts and sequence lengths.Ablation studies demonstrated that the dual-branch architecture,residual network,and self-attention mechanism each contribute critically to performance,with their combination reducing interference between pathways.Motif analysis revealed an enrichment of m6A sites in guanine(G)and cytosine(C),consistent with known regulatory patterns,supporting the model’s biological plausibility.Conclusion m6A-PSRA effectively captures RNA sequence features,achieving high prediction accuracy and robust generalization across tissues and species,providing an efficient computational tool for m6A methylation site prediction. 展开更多
关键词 N6-methyladenosine site Doc2vec BiLSTM dual-branch residual network self-attention
在线阅读 下载PDF
rTMS Improves Cognitive Function and Brain Network Connectivity in Patients With Alzheimer’s Disease
19
作者 XU Gui-Zhi LIU Lin +4 位作者 GUO Miao-Miao WANG Tian GAO Jiao-Jiao JI Yong WANG Pan 《生物化学与生物物理进展》 北大核心 2025年第8期2131-2145,共15页
Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,n... Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,neural oscillatory dynamics,and brain network reorganization remain unclear.This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments,molecular profiling,and neurophysiological monitoring.Methods In this prospective double-blind trial,12 AD patients underwent a 14-day protocol of 20 Hz rTMS,with comprehensive multimodal assessments performed pre-and postintervention.Cognitive functioning was quantified using the mini-mental state examination(MMSE)and Montreal cognitive assessment(MOCA),while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living(ADL)scale and combined neuropsychiatric inventory(NPI)-Hamilton depression rating scale(HAMD).Peripheral blood biomarkers,specifically Aβ1-40 and phosphorylated tau(p-tau181),were analyzed to investigate the effects of rTMS on molecular metabolism.Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients,while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization.Furthermore,systematic assessment of correlations between cognitive scale scores,blood biomarkers,and network characteristics was performed to elucidate cross-modal therapeutic associations.Results Clinically,MMSE and MOCA scores improved significantly(P<0.05).Biomarker showed that Aβ1-40 level increased(P<0.05),contrasting with p-tau181 reduction.Moreover,the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores.Post-intervention analyses revealed significant modulations in oscillatory power,characterized by pronounced reductions in delta(P<0.05)and theta bands(P<0.05),while concurrent enhancements were observed in alpha,beta,and gamma band activities(all P<0.05).Network analysis revealed frequency-specific reorganization:clustering coefficients were significantly decreased in delta,theta,and alpha bands(P<0.05),while global efficiency improvement was exclusively detected in the delta band(P<0.05).The alpha band demonstrated concurrent increases in average nodal degree(P<0.05)and characteristic path length reduction(P<0.05).Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181.Additionally,the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band.However,the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands.Conclusion 20 Hz rTMS targeting dorsolateral prefrontal cortex(DLPFC)significantly improves cognitive function and enhances the metabolic clearance ofβ-amyloid and tau proteins in AD patients.This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation,which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks.These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales,blood biomarkers,and EEG——in understanding and monitoring the progression of AD.This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment. 展开更多
关键词 transcranial magnetic stimulation Alzheimer’s disease power spectral density ELECTROENCEPHALOGRAM brain functional network
在线阅读 下载PDF
Efficiently enhancing thermal conductivity of polymer bonded explosives via the construction of primary-secondary thermal conductivity networks
20
作者 Xunyi Wang Peng Wang +4 位作者 Jie Chen Zhipeng Liu Yuxin Luo Wenbin Yang Guansong He 《Defence Technology(防务技术)》 2025年第6期95-103,共9页
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr... Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity. 展开更多
关键词 Thermally conductive performance Primary-secondary thermally conductive networks network density Polymer-bonded explosives
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部