BACKGROUND: Sepsis is a life-threatening inflammatory condition in which the invading pathogen avoids the host's defense mechanisms and continuously stimulates and damages host cells. Consequently, many immune res...BACKGROUND: Sepsis is a life-threatening inflammatory condition in which the invading pathogen avoids the host's defense mechanisms and continuously stimulates and damages host cells. Consequently, many immune responses initially triggered for protection become harmful because of the failure to restore homeostasis, resulting in ongoing hyperinflammation and immunosuppression. METHODS: A literature review was conducted to address bacterial sepsis, describe advances in understanding complex immunological reactions, critically assess diagnostic approaches, and emphasize the importance of studying bacterial bottlenecks in the detection and treatment of sepsis.RESULTS: Diagnosing sepsis via a single laboratory test is not feasible;therefore, multiple key biomarkers are typically monitored, with a focus on trends rather than absolute values. The immediate interpretation of sepsis-associated clinical signs and symptoms, along with the use of specific and sensitive laboratory tests, is crucial for the survival of patients in the early stages. However, long-term mortality associated with sepsis is now recognized, and alongside the progression of this condition, there is an in vivo selection of adapted pathogens.CONCLUSION: Bacterial sepsis remains a significant cause of mortality across all ages and societies. While substantial progress has been made in understanding the immunological mechanisms underlying the inflammatory response, there is growing recognition that the ongoing host-pathogen interactions, including the emergence of adapted virulent strains, shape both the acute and long-term outcomes in sepsis. This underscores the urgent need for novel high-throughput diagnostic methods and a shift toward more pre-emptive, rather than reactive, treatment strategies in sepsis care.展开更多
This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Compar...This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Comparative analysis revealed that MWS had a negligible detrimental effect on the structural integrity and organoleptic properties of BFT and FT,while effectively maintaining its water-holding capacity(WHC)and exhibiting the least impact on its texture.In contrast,PAS and ULS increased hardness and chewiness significantly(P<0.05),but ULS also enhanced the brightness of tofu.Throughout the storage period,the WHC,elasticity,and sensory properties of tofu generally decreased,whereas the hardness and chewiness increased.PAS-BFT and MWS-FT maintained sensory quality for the longest periods of 14 and 12 days respectively,and could be decomposed to more small molecule peptides within 0–8 days and 0–6 days,which are more easily to be absorbed by the body.The findings discovered that MWS is the most suitable method for sterilization of tofu,with superior capability in maintaining the quality,extending shelf life,and improving digestibility of tofu.展开更多
Hyperuricemia(HUA)is characterized by elevated levels of uric acid(UA)in the bloodstream,resulting from either excessive production or insufficient excretion of UA within the body.If left untreated,progressive or pers...Hyperuricemia(HUA)is characterized by elevated levels of uric acid(UA)in the bloodstream,resulting from either excessive production or insufficient excretion of UA within the body.If left untreated,progressive or persistent HUA can lead to gout,causing significant harm to human health.Lactic acid bacteria(LAB),generally recognized as safe(GRAS)probiotics,have been shown to alleviate symptoms associated with gastrointestinal disorders such as irritable bowel syndrome and inflammatory bowel disease while supporting overall bodily functions and health.Recently,LAB has emerged as a potentially safe,cost-effective and efficient treatment for HUA.This comprehensive review aims to explore the current literature on the mechanisms through which LAB controls HUA.These mechanisms include suppressing purine metabolism,absorbing purine compounds,modulating microbiota to maintain host global purine homeostasis,reducing intestinal permeability,producing metabolites that alleviate HUA symptoms,promoting the expression of urate excretory proteins and inhibiting the expression of urate reabsorption proteins.The findings presented in this review provide a framework for further investigation into how probiotic LAB can alleviate HUA by influencing UA metabolism and elucidating their underlying action mechanisms.展开更多
Oat avenanthramides(AVNs)have been found to exhibit novel lipid-lowering effects.However,the mechanism remains unclear.In this study,the effect of avenanthramide B(AVN B),as one of the major AVNs,on highfat diet(HFD)-...Oat avenanthramides(AVNs)have been found to exhibit novel lipid-lowering effects.However,the mechanism remains unclear.In this study,the effect of avenanthramide B(AVN B),as one of the major AVNs,on highfat diet(HFD)-induced mice was investigated.Results showed that AVN B significantly inhibited weight gain and improved hepatic and serum lipid biochemical indices.Hepatic RNA-sequencing analysis suggested that AVN B significantly modulates fatty acid(FA)metabolism.Hepatic real-time qualitative polymerase chain reaction(RT-q PCR)and Western blot results indicated that AVN B could alleviate FA synthesis by activating the adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)-sterol regulatory element binding protein-1c(SREBP1c)-fatty acid synthase(FAS),and increase FA oxidation by activating the AMPK/carnitine palmitoyltransferase 1A(CPT1A)and peroxisome proliferator-activated receptorα(PPARα).Additionally,AVN B had a regulating effect on ileum lipid metabolism by inhibiting intestinal cell differentiation and downregulating the expression levels of FA absorption-related protein and gene.Moreover,AVN B promoted the growth of beneficial bacteria and fungi such as Coriobacteriaceae_UCG-002,Parvibacter,Enterococcus,and Aspergillus,while decreasing the abundance of Roseburia,unclassified_f_Lachnospiraceae,Cladosporium,Eurotium,unclassified_f_Aspergillaceae and unclassified_f_Ceratocystidaceae.All these results provided new points of the lipid-lowing mechanism of AVNs and oats via the gut-liver axis.展开更多
In this research,an atmospheric-pressure air plasma is used to inactivate the multidrug-resistant Acinetobacter baumannii in liquid.The efficacy of the air plasma on bacterial deactivation and the cytobiological varia...In this research,an atmospheric-pressure air plasma is used to inactivate the multidrug-resistant Acinetobacter baumannii in liquid.The efficacy of the air plasma on bacterial deactivation and the cytobiological variations after the plasma treatment are investigated.According to colony forming units,nearly all the bacteria(6-log) are inactivated after 10 min of air plasma treatment.However,7% of the bacteria enter a viable but non-culturable state detected by the resazurin based assay during the same period of plasma exposure.Meanwhile,86% of the bacteria lose their membrane integrity in the light of SYTO 9/PI staining assay.The morphological changes in the cells are examined by scanning electron microscopy and bacteria with morphological changes are rare after plasma exposure in the liquid.The concentrations of the long-living RS,such as H2O2,NO3^- and O3,in liquid induced by plasma treatment are measured,and they increase with plasma treatment time.The changes of the intracellular ROS may be related to cell death,which may be attributed to oxidative stress and other damage effects induced by RS plasma generated in liquid.The rapid and effective bacteria inactivation may stem from the RS in the liquid generated by plasma and air plasmas may become a valuable therapy in the treatment of infected wounds.展开更多
Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in c...Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in collagen,which may be the primary target for degradation by spoilage microorganisms.In this work,a total of 17 isolates of spoilage bacteria that could secrete both collagenase and lipase were determined by raw-chicken juice agar(RJA)method,and the results showed that 7 strains of Serratia,Aeromonas,and Pseudomonas could significantly decompose the collagen ingredients.The gelatin zymography showed that Serratia liquefaciens(F5)and(G7)had apparent degradation bands around 50 kDa,and Aeromonas veronii(G8)and Aeromonas salmonicida(H8)had a band around.65 and 95 kDa,respectively.The lipase and collagenase activities were detected isolate-by-isolate,with F5 showing the highest collagenase activity.For spoilage ability on meat in situ,F5 performed strongest in spoilage ability,indicated by the total viable counts,total volatile basic nitrogen content,sensory scores,lipase,and collagenase activity.This study provides a theoretical basis for spoilage heterogeneity of strains with high-producing collagenase in meat.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the ...Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.展开更多
The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sau...The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sausages were investigated.The co-inoculated sausages showed higher free amino acid and organic acid contents than the non-inoculated control and sausages inoculated with D.hansenii alone.Meanwhile,the sausages inoculated with D.hansenii+L.plantarum,D.hansenii+L.sakei and D.hansenii+L.curvatus had the highest contents of aldehydes,esters and alcohols,respectively.The results of electronic tongue,electronic nose and sensory evaluation demonstrated that compared with the sausage inoculated with D.hansenii,the sour taste and fl oral odour increased and the fatty odour decreased in the sausage inoculated with D.hansenii+L.sakei;this was more favourable for the development of a desirable fl avour in sausages.Moreover,the partial least squares regression analysis indicated that 10 taste and 33 odour compounds were mainly responsible for the differences in the flavour profiles among the sausages.Overall,these findings contributed to a more comprehensive understanding of the formation of sensory characteristics in dry sausages co-inoculated with yeast and LAB.展开更多
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but...Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).展开更多
Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lac...Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products.展开更多
基金funded by the Deanship of Scientific Research (DSR) at King Abdulaziz UniversityJeddah+1 种基金Saudi Arabiaunder grant number G-150-248-1443。
文摘BACKGROUND: Sepsis is a life-threatening inflammatory condition in which the invading pathogen avoids the host's defense mechanisms and continuously stimulates and damages host cells. Consequently, many immune responses initially triggered for protection become harmful because of the failure to restore homeostasis, resulting in ongoing hyperinflammation and immunosuppression. METHODS: A literature review was conducted to address bacterial sepsis, describe advances in understanding complex immunological reactions, critically assess diagnostic approaches, and emphasize the importance of studying bacterial bottlenecks in the detection and treatment of sepsis.RESULTS: Diagnosing sepsis via a single laboratory test is not feasible;therefore, multiple key biomarkers are typically monitored, with a focus on trends rather than absolute values. The immediate interpretation of sepsis-associated clinical signs and symptoms, along with the use of specific and sensitive laboratory tests, is crucial for the survival of patients in the early stages. However, long-term mortality associated with sepsis is now recognized, and alongside the progression of this condition, there is an in vivo selection of adapted pathogens.CONCLUSION: Bacterial sepsis remains a significant cause of mortality across all ages and societies. While substantial progress has been made in understanding the immunological mechanisms underlying the inflammatory response, there is growing recognition that the ongoing host-pathogen interactions, including the emergence of adapted virulent strains, shape both the acute and long-term outcomes in sepsis. This underscores the urgent need for novel high-throughput diagnostic methods and a shift toward more pre-emptive, rather than reactive, treatment strategies in sepsis care.
基金supported by the Innovation Talents Project of Harbin Science and Technology Bureau(2022CXRCCGO11)。
文摘This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Comparative analysis revealed that MWS had a negligible detrimental effect on the structural integrity and organoleptic properties of BFT and FT,while effectively maintaining its water-holding capacity(WHC)and exhibiting the least impact on its texture.In contrast,PAS and ULS increased hardness and chewiness significantly(P<0.05),but ULS also enhanced the brightness of tofu.Throughout the storage period,the WHC,elasticity,and sensory properties of tofu generally decreased,whereas the hardness and chewiness increased.PAS-BFT and MWS-FT maintained sensory quality for the longest periods of 14 and 12 days respectively,and could be decomposed to more small molecule peptides within 0–8 days and 0–6 days,which are more easily to be absorbed by the body.The findings discovered that MWS is the most suitable method for sterilization of tofu,with superior capability in maintaining the quality,extending shelf life,and improving digestibility of tofu.
基金funded by National Natural Science Foundation of China(32360564)the Natural Science and Technology Innovation Development Multiplication Plan of Guangxi University(2022BZRC010)。
文摘Hyperuricemia(HUA)is characterized by elevated levels of uric acid(UA)in the bloodstream,resulting from either excessive production or insufficient excretion of UA within the body.If left untreated,progressive or persistent HUA can lead to gout,causing significant harm to human health.Lactic acid bacteria(LAB),generally recognized as safe(GRAS)probiotics,have been shown to alleviate symptoms associated with gastrointestinal disorders such as irritable bowel syndrome and inflammatory bowel disease while supporting overall bodily functions and health.Recently,LAB has emerged as a potentially safe,cost-effective and efficient treatment for HUA.This comprehensive review aims to explore the current literature on the mechanisms through which LAB controls HUA.These mechanisms include suppressing purine metabolism,absorbing purine compounds,modulating microbiota to maintain host global purine homeostasis,reducing intestinal permeability,producing metabolites that alleviate HUA symptoms,promoting the expression of urate excretory proteins and inhibiting the expression of urate reabsorption proteins.The findings presented in this review provide a framework for further investigation into how probiotic LAB can alleviate HUA by influencing UA metabolism and elucidating their underlying action mechanisms.
基金financially supported by the Major Project of Inner Mongolia Science and Technology Department,China(2021ZD0002)National Natural Science Foundation of China,China(32202054)Project Supported by the Shanghai Committee of Science and Technology,China(20DZ2202700)。
文摘Oat avenanthramides(AVNs)have been found to exhibit novel lipid-lowering effects.However,the mechanism remains unclear.In this study,the effect of avenanthramide B(AVN B),as one of the major AVNs,on highfat diet(HFD)-induced mice was investigated.Results showed that AVN B significantly inhibited weight gain and improved hepatic and serum lipid biochemical indices.Hepatic RNA-sequencing analysis suggested that AVN B significantly modulates fatty acid(FA)metabolism.Hepatic real-time qualitative polymerase chain reaction(RT-q PCR)and Western blot results indicated that AVN B could alleviate FA synthesis by activating the adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)-sterol regulatory element binding protein-1c(SREBP1c)-fatty acid synthase(FAS),and increase FA oxidation by activating the AMPK/carnitine palmitoyltransferase 1A(CPT1A)and peroxisome proliferator-activated receptorα(PPARα).Additionally,AVN B had a regulating effect on ileum lipid metabolism by inhibiting intestinal cell differentiation and downregulating the expression levels of FA absorption-related protein and gene.Moreover,AVN B promoted the growth of beneficial bacteria and fungi such as Coriobacteriaceae_UCG-002,Parvibacter,Enterococcus,and Aspergillus,while decreasing the abundance of Roseburia,unclassified_f_Lachnospiraceae,Cladosporium,Eurotium,unclassified_f_Aspergillaceae and unclassified_f_Ceratocystidaceae.All these results provided new points of the lipid-lowing mechanism of AVNs and oats via the gut-liver axis.
基金supported by the Spark Program of the second Affiliated Hospital of Anhui Medical University (Grant No.2015hhjh04)National Natural Science Foundation of China under Grant No.51777206+6 种基金Natural Science Foundation of Anhui Province (Grant No.1708085MA13 and No.1708085MB47)Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences under Grant (No.DSJJ-14-YY02)City University of Hong Kong Applied Research Grant (ARG) (No.9667144)Hong Kong Research Grants Council (RGC) General Research Funds (GRF) (No.City U 11301215)Doctoral Fund of Ministry of Education of China (No.2017M612058)Specialized Research Fund for the Doctoral Program of Hefei University of Technology (No.JZ2016HGBZ0768)Foundation of Anhui Province Key Laboratory of Medical Physics and Technology (Grant No.LMPT2017Y7BP0U1581)
文摘In this research,an atmospheric-pressure air plasma is used to inactivate the multidrug-resistant Acinetobacter baumannii in liquid.The efficacy of the air plasma on bacterial deactivation and the cytobiological variations after the plasma treatment are investigated.According to colony forming units,nearly all the bacteria(6-log) are inactivated after 10 min of air plasma treatment.However,7% of the bacteria enter a viable but non-culturable state detected by the resazurin based assay during the same period of plasma exposure.Meanwhile,86% of the bacteria lose their membrane integrity in the light of SYTO 9/PI staining assay.The morphological changes in the cells are examined by scanning electron microscopy and bacteria with morphological changes are rare after plasma exposure in the liquid.The concentrations of the long-living RS,such as H2O2,NO3^- and O3,in liquid induced by plasma treatment are measured,and they increase with plasma treatment time.The changes of the intracellular ROS may be related to cell death,which may be attributed to oxidative stress and other damage effects induced by RS plasma generated in liquid.The rapid and effective bacteria inactivation may stem from the RS in the liquid generated by plasma and air plasmas may become a valuable therapy in the treatment of infected wounds.
基金financed by grants from the Natural Science Foundation of Jiangsu Province in China (BK20221515)the National Natural Science Foundation of China (32172266)。
文摘Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in collagen,which may be the primary target for degradation by spoilage microorganisms.In this work,a total of 17 isolates of spoilage bacteria that could secrete both collagenase and lipase were determined by raw-chicken juice agar(RJA)method,and the results showed that 7 strains of Serratia,Aeromonas,and Pseudomonas could significantly decompose the collagen ingredients.The gelatin zymography showed that Serratia liquefaciens(F5)and(G7)had apparent degradation bands around 50 kDa,and Aeromonas veronii(G8)and Aeromonas salmonicida(H8)had a band around.65 and 95 kDa,respectively.The lipase and collagenase activities were detected isolate-by-isolate,with F5 showing the highest collagenase activity.For spoilage ability on meat in situ,F5 performed strongest in spoilage ability,indicated by the total viable counts,total volatile basic nitrogen content,sensory scores,lipase,and collagenase activity.This study provides a theoretical basis for spoilage heterogeneity of strains with high-producing collagenase in meat.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
文摘Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.
基金funded by the National Natural Science Foundation of China(32172232 and 31771990)the Major Science and Technology Projects of Heilongjiang Province(2021ZX12B05).
文摘The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sausages were investigated.The co-inoculated sausages showed higher free amino acid and organic acid contents than the non-inoculated control and sausages inoculated with D.hansenii alone.Meanwhile,the sausages inoculated with D.hansenii+L.plantarum,D.hansenii+L.sakei and D.hansenii+L.curvatus had the highest contents of aldehydes,esters and alcohols,respectively.The results of electronic tongue,electronic nose and sensory evaluation demonstrated that compared with the sausage inoculated with D.hansenii,the sour taste and fl oral odour increased and the fatty odour decreased in the sausage inoculated with D.hansenii+L.sakei;this was more favourable for the development of a desirable fl avour in sausages.Moreover,the partial least squares regression analysis indicated that 10 taste and 33 odour compounds were mainly responsible for the differences in the flavour profiles among the sausages.Overall,these findings contributed to a more comprehensive understanding of the formation of sensory characteristics in dry sausages co-inoculated with yeast and LAB.
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
基金provided by the Jiangsu Provincial Key Research and Development Program (Grant No. BE2022362)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).
基金supported by the National Natural Science Foundation of China(32102605)the Agricultural Science and Technology Innovation Program under Grant(CAAS-ASTIP-2020-IAR)。
文摘Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products.