期刊文献+
共找到900篇文章
< 1 2 45 >
每页显示 20 50 100
基于Attention-GAT-LSTM的算法模型在新型电力系统中的应用探索
1
作者 刘锦涛 孙玉芹 +2 位作者 郭子涛 王添翼 程文 《南方电网技术》 北大核心 2025年第6期95-104,共10页
精确的短期电力负荷预测对新型电力系统日发电计划的制订和实时调度至关重要,为取得准确可靠的负荷预测结果,针对真实用电负荷数据的时序性、不确定性等特征,提出了一种基于Attention-GAT-LSTM的智能算法,并应用在实际的新型电力系统中... 精确的短期电力负荷预测对新型电力系统日发电计划的制订和实时调度至关重要,为取得准确可靠的负荷预测结果,针对真实用电负荷数据的时序性、不确定性等特征,提出了一种基于Attention-GAT-LSTM的智能算法,并应用在实际的新型电力系统中。在原始数据的处理中创新地结合了自注意力机制,引入了数据处理单元附加权值,并采用跳跃连接机制防止结果出现过拟合;将处理后的数据传递到图注意力网络(graph attention network,GAT)进行空间节点的特征提取,再传递到长短期记忆网络(long short-term memory,LSTM)进行时间特征的提取;通过前向传播、反向传播和梯度下降方法,使LSTM层的权重和偏置得到迭代更新,有效地减少信息在迭代过程中的丢失并突出关键时间点信息。最后通过多种不同模型的对比分析,验证了该方法在短期电力负荷预测(小时级)时具有较高的预测精度,可以为新型电力系统的运行调度、规划建设提供数据支持。 展开更多
关键词 新型电力系统 电力负荷预测 图神经网络 自注意力机制 长短期记忆网络
在线阅读 下载PDF
DHSEGATs:distance and hop-wise structures encoding enhanced graph attention networks 被引量:1
2
作者 HUANG Zhiguo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期350-359,共10页
Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can signi... Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result. 展开更多
关键词 graph attention network(GAT) graph structure information label propagation
在线阅读 下载PDF
融合RoBERTa-GCN-Attention的隐喻识别与情感分类模型 被引量:3
3
作者 杨春霞 韩煜 +1 位作者 桂强 陈启岗 《小型微型计算机系统》 CSCD 北大核心 2024年第3期576-583,共8页
在隐喻识别与隐喻情感分类任务的联合研究中,现有多任务学习模型存在对隐喻语料中的上下文语义信息和句法结构信息提取不够准确,并且缺乏对粗细两种粒度信息同时捕捉的问题.针对第1个问题,首先改进了传统的RoBERTa模型,在原有的自注意... 在隐喻识别与隐喻情感分类任务的联合研究中,现有多任务学习模型存在对隐喻语料中的上下文语义信息和句法结构信息提取不够准确,并且缺乏对粗细两种粒度信息同时捕捉的问题.针对第1个问题,首先改进了传统的RoBERTa模型,在原有的自注意力机制中引入上下文信息,以此提取上下文中重要的隐喻语义特征;其次在句法依存树上使用图卷积网络提取隐喻句中的句法结构信息.针对第2个问题,使用双层注意力机制,分别聚焦于单词和句子层面中对隐喻识别和情感分类有贡献的特征信息.在两类任务6个数据集上的对比实验结果表明,该模型相比基线模型性能均有提升. 展开更多
关键词 隐喻识别 情感分类 多任务学习 RoBERTa 图卷积网络 注意力机制
在线阅读 下载PDF
面向交通流量预测的时空Graph-CoordAttention网络 被引量:2
4
作者 刘建松 康雁 +2 位作者 李浩 王韬 王海宁 《计算机科学》 CSCD 北大核心 2023年第S01期558-564,共7页
交通预测是城市智能交通系统的一个重要研究组成部分,使人们的出行更加效率和安全。由于复杂的时间和空间依赖性,准确预测交通流量仍然是一个巨大的挑战。近年来,图卷积网络(GCN)在交通预测方面表现出巨大的潜力,但基于GCN的模型往往侧... 交通预测是城市智能交通系统的一个重要研究组成部分,使人们的出行更加效率和安全。由于复杂的时间和空间依赖性,准确预测交通流量仍然是一个巨大的挑战。近年来,图卷积网络(GCN)在交通预测方面表现出巨大的潜力,但基于GCN的模型往往侧重于单独捕捉时间和空间的依赖性,忽视了时间和空间依赖性之间的动态关联性,不能很好地融合它们。此外,以前的方法使用现实世界的静态交通网络来构建空间邻接矩阵,这可能忽略了动态的空间依赖性。为了克服这些局限性,并提高模型的性能,提出了一种新颖的时空Graph-CoordAttention网络(STGCA)。具体来说,提出了时空同步模块,用来建模不同时刻的时空依赖交融关系。然后,提出了一种动态图学习的方案,基于车流量之间数据关联,挖掘出潜在的图信息。在4个公开的数据集上和现有基线模型进行对比实验,STGCA表现了优异的性能。 展开更多
关键词 交通流量预测 时空预测 图卷积网络 注意力机制 时空依赖
在线阅读 下载PDF
基于CNN-GraphSAGE双分支特征融合的齿轮箱故障诊断方法
5
作者 韩延 吴迪 +1 位作者 黄庆卿 张焱 《电子测量与仪器学报》 北大核心 2025年第3期115-124,共10页
针对卷积神经网络(CNN)在振动数据结构信息上挖掘不足导致故障诊断精度不高的问题,提出一种基于卷积神经网络与图采样和聚合网络(CNN-GraphSAGE)双分支特征融合的齿轮箱故障诊断方法。首先,对齿轮箱振动数据进行小波包分解,利用分解后... 针对卷积神经网络(CNN)在振动数据结构信息上挖掘不足导致故障诊断精度不高的问题,提出一种基于卷积神经网络与图采样和聚合网络(CNN-GraphSAGE)双分支特征融合的齿轮箱故障诊断方法。首先,对齿轮箱振动数据进行小波包分解,利用分解后的小波包特征系数构建包含节点和边的图结构数据;然后,建立CNN-GraphSAGE双分支特征提取网络,在CNN分支中采用空洞卷积网络提取数据的全局特征,在GraphSAGE网络分支中通过多层特征融合策略来挖掘数据结构中隐含的关联信息;最后,基于SKNet注意力机制融合提取的双分支特征,并输入全连接层中实现对齿轮箱的故障诊断。为验证研究方法在齿轮箱故障诊断上的优良性能,首先对所提方法进行消融实验,然后在无添加噪声和添加1 dB噪声的条件下进行对比实验。实验结果表明,即使在1 dB噪声的条件下,研究方法的平均诊断精度为92.07%,均高于其他对比模型,证明了研究方法能够有效地识别齿轮箱的各类故障。 展开更多
关键词 图卷积神经网络 卷积神经网络 故障诊断 注意力机制
在线阅读 下载PDF
基于Attention深度随机森林的社区演化事件预测 被引量:6
6
作者 潘剑飞 曹燕 +2 位作者 董一鸿 陈华辉 钱江波 《电子学报》 EI CAS CSCD 北大核心 2019年第10期2050-2060,共11页
在网络结构不断变化的同时,社区结构也随之演化.社区结构在不同时间片的变化可定义为四种不同的演化事件:持续、分离、融合和消失.本文运用网络表示学习的方法,对网络进行图嵌入编码映射到低维向量空间中,研究动态社区演化事件的预测.... 在网络结构不断变化的同时,社区结构也随之演化.社区结构在不同时间片的变化可定义为四种不同的演化事件:持续、分离、融合和消失.本文运用网络表示学习的方法,对网络进行图嵌入编码映射到低维向量空间中,研究动态社区演化事件的预测.特征方面,在传统的社区内部属性特征、时间片间属性特性变化和前段时间片的社区演化事件的特征维度的基础上,引入潜在结构特征表征四种演化事件,运用随机游走和Softmax思想获取潜在的结构特征;模型方面,引入深度随机森林的策略,同时采用attention机制、蒙特卡洛特征采样策略进行特征融合和特征训练,克服了已有算法仅获取局部结构特征的缺陷.实验在DBLP、FACEBOOK和Bitcoin数据集上,对比SVM、XGBOOST和RIDGE模型训练,证实了新提出的算法模型对最终预测准确率有很大的提升. 展开更多
关键词 社区演化 图嵌入 网络表示学习 深度随机森林 attention机制
在线阅读 下载PDF
基于时空多维的VMD-GAT-Attention短时交通流量组合预测模型 被引量:3
7
作者 田帅帅 殷礼胜 何怡刚 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第2期176-185,共10页
文章针对短时交通流量时空依赖性、非线性的特点,为提高交通流量的预测精度,将时间建模和空间建模相结合,提出一种整合改进的变分模态分解(variational mode decomposition,VMD)结合图注意力网络(graph attention networks,GAT)与注意... 文章针对短时交通流量时空依赖性、非线性的特点,为提高交通流量的预测精度,将时间建模和空间建模相结合,提出一种整合改进的变分模态分解(variational mode decomposition,VMD)结合图注意力网络(graph attention networks,GAT)与注意力模型搭建的组合预测模型。在时间维度上,利用改进粒子群算法(improved particle swarm optimization,IPSO)优化的变分模态算法分解交通流量,保证了VMD的充分分解,并得到相对平稳的交通流量序列,提高了组合模型的预测精度;在空间维度上,构建有效分解模态与原交通流量序列的GAT,提取不同时间序列中各交通节点之间的空间信息;引入注意力机制提高主要时空信息权重,降低次要时空信息权重,进一步提升了组合模型的预测精度。实验结果表明,该组合模型比IPSO-VMD-GAT-Attention模型以及VMD-GAT-Attention模型的均方根误差分别下降了31%和21%,而且对于VMD-GAT模型和GAT模型,均方根误差分别从14.1231和9.9136下降到2.2928,说明该模型达到较好的预测效果。 展开更多
关键词 交通流量预测 改进粒子群算法(IPSO) 变分模态分解(VMD) 图注意力网络(GAT) 注意力机制
在线阅读 下载PDF
基于多域图神经网络的疾病预测模型 被引量:2
8
作者 罗熹 刘洋 安莹 《湖南大学学报(自然科学版)》 北大核心 2025年第4期124-134,共11页
电子病历数据类型多样以及时序不规则,现有的基于深度学习的方法在特征学习的过程中大多无法同时兼顾对不同类型临床数据间静态关联和就诊记录间动态时序依赖的有效捕获.针对该问题,本文提出了一种基于多域图神经网络的疾病预测模型.该... 电子病历数据类型多样以及时序不规则,现有的基于深度学习的方法在特征学习的过程中大多无法同时兼顾对不同类型临床数据间静态关联和就诊记录间动态时序依赖的有效捕获.针对该问题,本文提出了一种基于多域图神经网络的疾病预测模型.该方法首先利用一个结合编码级注意力和时间感知LSTM的时序特征学习模块获得患者每次就诊的初始特征表示.然后,根据就诊序列中不同就诊间的相关性和时间间隔信息分别构建了一个就诊亲和图和一个就诊时序图,并通过图卷积神经网络从图中挖掘就诊记录间的静态语义关联和动态时序依赖.最后,利用一个基于自注意力机制的多域特征融合模块将时序特征和语义关联特征结合起来得到最终的患者融合特征表示,用于患者未来的疾病预测.在两个真实临床数据集上的实验结果表明,本文方法超过其他现有的方法获得了更高的预测准确性. 展开更多
关键词 电子病历 疾病预测 图神经网络 注意力机制
在线阅读 下载PDF
基于通道自注意图卷积网络的运动想象脑电分类实验 被引量:1
9
作者 孟明 张帅斌 +2 位作者 高云园 佘青山 范影乐 《实验技术与管理》 北大核心 2025年第2期73-80,共8页
该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer ... 该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer GCN,CAMGCN)。首先,CAMGCN计算脑电信号各个通道间的皮尔逊相关系数进行图建模,并通过通道位置编码模块学习通道间关系。然后将得到的时域和频域特征分量通过通道自注意图嵌入模块进行图嵌入,得到图数据。最后通过多级GCN模块提取并融合多层次拓扑信息,得出分类结果。CAMGCN深化了模型在自适应学习通道间动态关系的能力,并在结构方面提高了自注意机制与图数据的适配性。该模型在BCI Competition-Ⅳ2a数据集上的准确率达到83.8%,能够有效实现对运动想象任务的分类。该实验有助于增进学生对于深度学习和脑机接口的理解,培养创新思维,提高科研素质。 展开更多
关键词 脑机接口 脑电图 图卷积网络 注意力机制
在线阅读 下载PDF
基于双注意力图神经网络的链路预测 被引量:1
10
作者 杨真真 林泽龙 杨永鹏 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期106-114,共9页
链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1... 链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1)大多数基于GNN的方法往往容易忽略为链路预测提供额外帮助的边信息的重要性;(2)大多数基于GNN的方法都仅捕获表示图的邻居节点间相似性的低频信息,忽略了表示邻居节点间差异性的高频信息;(3)大多数基于GNN的方法都未考虑输入特征矩阵的节点维度和特征维度两个维度,只关注其中一个维度。针对这些问题,提出了一种基于双注意力图神经网络(Dual Attention Graph Neural Network,DAGNN)的链路预测方法,该方法包含两条路径,以不同的角度更新节点表示。其中一条是基于图神经网络的路径,采用含边信息的频率自适应图注意力网络(Frequency Adaptive Graph Attention Network with Edge Information,FAGAT⁃EI)作为基础模型,有效地利用边信息增强节点之间的关系,并利用频率自适应机制平衡高低频率邻居信息的权重,从而缓解GNN的过度平滑问题;另一条是基于通道注意力网络的路径,提出了一种新的压缩-激励通道注意力模块(Squeeze and Excitation⁃Channel At⁃tention Module,SE⁃CAM)作为基础模型,充分考虑输入特征矩阵的节点维度和特征维度,并自动学习和调整每个节点的不同特征权重,从而得到更有意义的节点表示。最后在两个基准数据集上进行了实验,实验结果表明,提出的链路预测方法在Last⁃FM和Book⁃Crossing两个数据集上的AUC和ACC指标均优于其他基线模型,展现出了卓越的链路预测性能。 展开更多
关键词 链路预测 图神经网络 注意力机制 压缩-激励模块 频率自适应
在线阅读 下载PDF
基于Bert+GCN多模态数据融合的药物分子属性预测 被引量:1
11
作者 闫效莺 靳艳春 +1 位作者 冯月华 张绍武 《生物化学与生物物理进展》 北大核心 2025年第3期783-794,共12页
目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出... 目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出大量优于传统特征工程方法的分子属性预测算法。然而这些算法模型仍然存在标记数据稀缺、泛化性能差等问题。鉴于此,本文提出一种基于Bert+GCN的多模态数据融合的分子属性预测算法(命名为BGMF),旨在整合药物分子的多模态数据,并充分利用大量无标记药物分子训练模型学习药物分子的有用信息。方法本文提出了BGMF算法,该算法根据药物SMILES表达式分别提取了原子序列、分子指纹序列和分子图数据,采用预训练模型Bert和图卷积神经网络GCN结合的方式进行特征学习,在挖掘药物分子中“单词”全局特征的同时,融合了分子图的局部拓扑特征,从而更充分利用分子全局-局部上下文语义关系,之后,通过对原子序列和分子指纹序列的双解码器设计加强分子特征表达。结果5个数据集共43个分子属性预测任务上,BGMF方法的AUC值均优于现有其他方法。此外,本文还构建独立测试数据集验证了模型具有良好的泛化性能。对生成的分子指纹表征(molecular fingerprint representation)进行t-SNE可视化分析,证明了BGMF模型可成功捕获不同分子指纹的内在结构与特征。结论通过图卷积神经网络与Bert模型相结合,BGMF将分子图数据整合到分子指纹恢复和掩蔽原子恢复的任务中,可以有效地捕捉分子指纹的内在结构和特征,进而高效预测药物分子属性。 展开更多
关键词 Bert预训练 注意力机制 分子指纹 分子属性预测 图卷积神经网络
在线阅读 下载PDF
融合稀疏图注意力的多元时间序列异常检测方法 被引量:1
12
作者 衡红军 代栋炜 《计算机工程与设计》 北大核心 2025年第3期841-849,共9页
为解决时序数据中时空依赖关系不明确而导致多元时间序列异常检测效果较差的问题,提出一种基于稀疏图注意力网络的异常检测模型PSGAT-AD(ProbSparse graph attention networks anomaly detection)。采用卷积神经网络(convolutional neur... 为解决时序数据中时空依赖关系不明确而导致多元时间序列异常检测效果较差的问题,提出一种基于稀疏图注意力网络的异常检测模型PSGAT-AD(ProbSparse graph attention networks anomaly detection)。采用卷积神经网络(convolutional neural networks,CNN)提取时间戳上下文信息并使用全局时间戳编码和Transformer位置编码增强序列之间的联系。利用稀疏自注意力关注重要的时间戳与特征,通过自注意力蒸馏(self-attention distillation)降低输入规模,使重要的特征更加突出,以学习时间和特征两个维度的复杂依赖关系,提升表示学习质量。通过构建基于预测和重构的综合损失函数,对模型参数进行优化。将综合损失误差作为异常得分实现异常判定。实验结果表明,PSGAT-AD模型在4个公开数据集上的F1得分提升1.47%~6.52%。 展开更多
关键词 异常检测 多元时间序列 图注意力网络 时间戳编码 稀疏自注意力 自注意力蒸馏 综合损失误差
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
13
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
融合全局和属性信息的双图神经网络会话推荐
14
作者 杨兴耀 齐正 +3 位作者 张祖莲 于炯 陈嘉颖 王东晓 《计算机工程与设计》 北大核心 2025年第3期770-778,共9页
为解决现有会话推荐未利用项目的额外属性信息,以及忽略全局项目之间交互问题,提出一种融合全局和属性信息的双图神经网络会话推荐模型。在会话序列中捕获项目显式和隐式信息,将项目之间的交互关系构建成全局图和属性图,在全局图中利用... 为解决现有会话推荐未利用项目的额外属性信息,以及忽略全局项目之间交互问题,提出一种融合全局和属性信息的双图神经网络会话推荐模型。在会话序列中捕获项目显式和隐式信息,将项目之间的交互关系构建成全局图和属性图,在全局图中利用一个门控机制捕获显式信息,在属性图中将一个自注意力机制嵌入到图注意力网络中学习项目隐式信息。利用池化操作将两种信息融合,根据最终嵌入计算预测评分。实验结果表明,模型在3个公开数据集Diginetica、Tmall和30Music上的精确度和平均倒数排名优于新近基线模型,验证了模型的有效性。 展开更多
关键词 推荐系统 会话推荐 图神经网络 注意力机制 门控机制 图注意力网络 自注意力机制
在线阅读 下载PDF
基于GAT-GRU的高渗透率分布式新能源接入的配电网无功优化 被引量:1
15
作者 刘会家 滕杰 +1 位作者 冯铃 肖懂 《现代电力》 北大核心 2025年第3期531-541,共11页
无功优化在配电网的电压控制、潮流分布以及整个配电网的稳定中起着至关重要的作用。目前,高渗透率新能源的分布式并网以及负荷的多样化给电网的稳定运行带来了巨大的挑战,传统无功补偿方式的时效性以及准确性在当下复杂电网背景下已经... 无功优化在配电网的电压控制、潮流分布以及整个配电网的稳定中起着至关重要的作用。目前,高渗透率新能源的分布式并网以及负荷的多样化给电网的稳定运行带来了巨大的挑战,传统无功补偿方式的时效性以及准确性在当下复杂电网背景下已经无法满足低成本–高质量的供电要求。针对以上情况,该文采用图注意力网络(graph attention networks,GAT)结合门控循环单元(gate recurrent unit,GRU)神经网络对配电网的无功做出优化决策,基于GAT-GRU网络,把握节点间相关性特征的同时获取配电网特征时间依赖性。依据决策,通过无功调节设备与智能柔性开关(soft open point,SOP)协同,以解决配电网的无功优化问题。最后,利用改进的IEEE 33节点配电模型对所提方法进行验证,结果表明GAT-GRU网络在电压控制、网络损耗优化等方面具有良好的效果,证明了该方法在无功优化中的有效性与优异性。 展开更多
关键词 无功优化 配电网 图注意力网络 门控循环单元 分布式能源 智能软开关
在线阅读 下载PDF
基于双图神经网络的会话推荐算法
16
作者 李忠伟 吴金燠 +2 位作者 刘昕 周洁 李可一 《计算机工程与设计》 北大核心 2025年第1期23-29,共7页
针对现有会话推荐算法缺乏对属性信息利用的问题,提出一种基于双图神经网络的会话推荐算法(SR-DGNN)。分别构建会话图和全局相似图学习项目的时序特征和内容特征表示,设计相似度图卷积网络(S-GCN)对全局相似图进行建模。设计基于注意力... 针对现有会话推荐算法缺乏对属性信息利用的问题,提出一种基于双图神经网络的会话推荐算法(SR-DGNN)。分别构建会话图和全局相似图学习项目的时序特征和内容特征表示,设计相似度图卷积网络(S-GCN)对全局相似图进行建模。设计基于注意力机制的融合策略对项目的特征表示进行聚合,获取会话的全局表示。综合考虑用户的长期和短期兴趣,预测用户偏好。在KKBOX和MIND两个数据集上进行了大量实验,实验结果表明,所提模型优于现有基准模型。 展开更多
关键词 推荐系统 会话推荐 图神经网络 会话图 全局相似图 相似度图卷积网络 注意力机制
在线阅读 下载PDF
聚合全局交互与局部交互的知识图谱补全
17
作者 冯勇 栾超杰 +2 位作者 王嵘冰 徐红艳 张永刚 《计算机科学与探索》 北大核心 2025年第7期1909-1917,共9页
知识图谱的不完整性严重影响了下游任务的应用与发展,因此,有必要对其进行改进以补充缺失值,即知识图谱补全。现有的知识图谱补全模型大多重组实体关系嵌入表示以捕获局部交互。但这种方法破坏了三元组的原有结构,只能利用单一的局部交... 知识图谱的不完整性严重影响了下游任务的应用与发展,因此,有必要对其进行改进以补充缺失值,即知识图谱补全。现有的知识图谱补全模型大多重组实体关系嵌入表示以捕获局部交互。但这种方法破坏了三元组的原有结构,只能利用单一的局部交互而忽略了实体关系间全局交互的影响。为此,提出一种聚合全局交互与局部交互的知识图谱补全方法AGILI。该方法首先引入自注意力机制获取头实体和关系间的信息关联程度,生成融入全局交互信息的嵌入表示,再采用卷积神经网络从新嵌入表示中提取局部交互信息,设计基于关系权重的可学习交互聚合器,在将全局交互与局部交互进行特征融合时,可以根据关系类别自适应地调整两种交互的重要程度,提高方法在多关系知识图谱上的表达能力。在公开数据集FB15k-237、WN18RR和Kinship上通过链接预测任务进行实验验证,实验结果表明,与最新的基于卷积神经网络的模型ConvD相比,所提出的方法在FB15k-237数据集上Hits@1、Hits@3指标分别提高了6.9%、5.3%,证明了所提出方法的优越性。 展开更多
关键词 知识图谱 知识图谱补全 链接预测 自注意力机制 卷积神经网络
在线阅读 下载PDF
基于时序聚合异构图的高价值专利识别方法 被引量:1
18
作者 邓娜 喻卓群 +3 位作者 孙俊杰 陈旭 刘树栋 孙湘怡 《情报杂志》 北大核心 2025年第6期127-137,共11页
[研究目的]提出一种基于时序聚合异构图的高价值专利识别模型,旨在解决现有高价值专利识别方法在利用专利异构关联和时序特征方面不足的问题,以更精确地识别高价值专利。[研究方法]通过整合专利多模态信息并设计时序-引用影响力动态更... [研究目的]提出一种基于时序聚合异构图的高价值专利识别模型,旨在解决现有高价值专利识别方法在利用专利异构关联和时序特征方面不足的问题,以更精确地识别高价值专利。[研究方法]通过整合专利多模态信息并设计时序-引用影响力动态更新机制,生成反映专利价值变化的时序聚合异构图。构建融入双向注意力机制的异构图卷积网络模型,提高对专利异构特征的提取能力,实现对高价值专利的精确识别。[研究结果/结论]实验表明,该文方法在智能电网领域的专利数据集上准确率和F1值分别达到84.61%和84.59%,优于常规方法,验证了方法的有效性,为专利筛选和价值评估提供了新的视角和方法。 展开更多
关键词 高价值专利识别 异构图卷积网络 双向注意力机制 动态更新机制 多维特征
在线阅读 下载PDF
多度量下ResGAT的风力发电机齿轮箱故障诊断
19
作者 李明 曹洁 +1 位作者 刘宗礼 王进花 《太阳能学报》 北大核心 2025年第6期683-690,共8页
针对现有深度学习方法在风力发电机齿轮箱故障诊断方面的特征提取和样本相似性建模局限性,提出一种多种距离度量下残差连接的图注意力网络(ResGAT)。该方法构建全连接图以生成邻接矩阵,并结合多种距离度量方法,充分挖掘样本之间的相似... 针对现有深度学习方法在风力发电机齿轮箱故障诊断方面的特征提取和样本相似性建模局限性,提出一种多种距离度量下残差连接的图注意力网络(ResGAT)。该方法构建全连接图以生成邻接矩阵,并结合多种距离度量方法,充分挖掘样本之间的相似性。利用图注意力网络进行节点特征聚合,结合残差连接以减轻模型梯度消失风险。进一步地,在Adam优化器中融入L2正则化及偏置校正,以降低过拟合问题。实验结果显示,ResGAT方法在WT-Planetary gearbox dataset齿轮箱数据集上能有效提取样本间相似性,并在风力发电机齿轮箱故障诊断上展现出优异性能。 展开更多
关键词 风力发电机 齿轮箱 故障诊断 深度学习 图注意力网络 过拟合
在线阅读 下载PDF
基于增强图神经网络和对比学习的复杂网络节点分类
20
作者 徐培玲 王玉 谭艳丽 《电信科学》 北大核心 2025年第8期127-138,共12页
复杂网络节点分类大多基于图神经网络学习节点表示而实现,图神经网络通过邻域聚合对复杂网络局部结构信息进行编码。然而,图神经网络的过平滑问题导致复杂网络节点分类性能受限。基于此,提出一种基于增强图神经网络和对比学习的复杂网... 复杂网络节点分类大多基于图神经网络学习节点表示而实现,图神经网络通过邻域聚合对复杂网络局部结构信息进行编码。然而,图神经网络的过平滑问题导致复杂网络节点分类性能受限。基于此,提出一种基于增强图神经网络和对比学习的复杂网络节点分类方法。该方法不仅为邻域节点引入注意力来区分各邻居节点的重要性,而且采用局部邻域重叠度和全局邻域重叠度构造边的特征,从而扩大节点表示的信息量。最后,引入对比学习对神经网络进行训练,从而利用网络全局节点分类先验信息对节点表示进行联合优化。在Cora、Citeseer、PubMed和Chameleon公开网络数据集上进行了实验,结果表明,相较于其他先进方法,所提方法的节点分类性能更好,并通过消融实验验证了所提方法的有效性。 展开更多
关键词 网络节点分类 复杂网络 图神经网络 图注意力网络 对比学习
在线阅读 下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部