复杂电磁环境下卫星信号往往淹没在背景和噪声中,传统的信号检测算法在没有准确先验知识的情况下性能急剧降低,目前基于深度学习的信号检测算法往往需要依赖专家经验的数据后处理步骤,无法对信号进行端到端检测.针对上述缺陷,提出一种基...复杂电磁环境下卫星信号往往淹没在背景和噪声中,传统的信号检测算法在没有准确先验知识的情况下性能急剧降低,目前基于深度学习的信号检测算法往往需要依赖专家经验的数据后处理步骤,无法对信号进行端到端检测.针对上述缺陷,提出一种基于DETR_S(DEtection with TRansformer on Signal)的卫星信号智能检测方法.DETR_S以编码器-解码器架构为基础,利用Transformer网络全局建模能力捕获频谱信息,采用多头自注意力机制有效改善频谱信息长距离依赖的问题.基于匈牙利算法的预测框匹配模块摒弃了非极大值抑制的数据后处理步骤,将信号检测问题转变为集合预测问题,使模型并行输出检测结果.引入信号重构模块,将频谱重构损失函数加入损失函数中,辅助模型挖掘频谱深层表征,提升信号检测性能.实验结果表明,在仅使用信号频谱幅度信息条件下,DETR_S能够在信噪比等于0dB及以上对卫星信号进行精确检测(>95%),优于典型的目标检测方法.展开更多
布里渊光时域分析(BOTDA)系统中的布里渊增益谱(BGS)可能存在噪声,造成布里渊频移等重要信息难以提取的问题,故需对BGS降噪。现有BGS降噪方法分为基于模型的方法(如BM3D)和基于学习方法(如Dn CNN)两大类,分别存在降噪速度慢和可解释性...布里渊光时域分析(BOTDA)系统中的布里渊增益谱(BGS)可能存在噪声,造成布里渊频移等重要信息难以提取的问题,故需对BGS降噪。现有BGS降噪方法分为基于模型的方法(如BM3D)和基于学习方法(如Dn CNN)两大类,分别存在降噪速度慢和可解释性差的问题。对此提出基于多尺度深度展开网络(MSDUN)的BGS降噪方法,具有降噪效果好、降噪速度快、可解释性好的优点。MSDUN通过将输入图像经过一系列参数可学习的降噪模块实现降噪,卷积神经网络是隐含在每个降噪模块中的,因此MSDUN结构层次清楚,具有明晰的可解释性。由于在单个降噪模块中使用了卷积神经网络,因此降噪速度相比BM3D这类基于模型的方法更快。仿真和实验结果表明,MSDUN可以将三维BGS灰度图信噪比增强8.14 d B,降噪效果上优于BM3D的3.92 d B和Dn CNN的2.23 d B;降噪速度上,MSDUN只需4.8 s,比BM3D快了近30倍;相比Dn CNN,MSDUN算法层次结构更加清晰,可解释性好。展开更多
文摘复杂电磁环境下卫星信号往往淹没在背景和噪声中,传统的信号检测算法在没有准确先验知识的情况下性能急剧降低,目前基于深度学习的信号检测算法往往需要依赖专家经验的数据后处理步骤,无法对信号进行端到端检测.针对上述缺陷,提出一种基于DETR_S(DEtection with TRansformer on Signal)的卫星信号智能检测方法.DETR_S以编码器-解码器架构为基础,利用Transformer网络全局建模能力捕获频谱信息,采用多头自注意力机制有效改善频谱信息长距离依赖的问题.基于匈牙利算法的预测框匹配模块摒弃了非极大值抑制的数据后处理步骤,将信号检测问题转变为集合预测问题,使模型并行输出检测结果.引入信号重构模块,将频谱重构损失函数加入损失函数中,辅助模型挖掘频谱深层表征,提升信号检测性能.实验结果表明,在仅使用信号频谱幅度信息条件下,DETR_S能够在信噪比等于0dB及以上对卫星信号进行精确检测(>95%),优于典型的目标检测方法.
文摘布里渊光时域分析(BOTDA)系统中的布里渊增益谱(BGS)可能存在噪声,造成布里渊频移等重要信息难以提取的问题,故需对BGS降噪。现有BGS降噪方法分为基于模型的方法(如BM3D)和基于学习方法(如Dn CNN)两大类,分别存在降噪速度慢和可解释性差的问题。对此提出基于多尺度深度展开网络(MSDUN)的BGS降噪方法,具有降噪效果好、降噪速度快、可解释性好的优点。MSDUN通过将输入图像经过一系列参数可学习的降噪模块实现降噪,卷积神经网络是隐含在每个降噪模块中的,因此MSDUN结构层次清楚,具有明晰的可解释性。由于在单个降噪模块中使用了卷积神经网络,因此降噪速度相比BM3D这类基于模型的方法更快。仿真和实验结果表明,MSDUN可以将三维BGS灰度图信噪比增强8.14 d B,降噪效果上优于BM3D的3.92 d B和Dn CNN的2.23 d B;降噪速度上,MSDUN只需4.8 s,比BM3D快了近30倍;相比Dn CNN,MSDUN算法层次结构更加清晰,可解释性好。