Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss...Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.展开更多
提出了一种在粒子滤波框架下的结合在线外观模型(online appearance model,OAM)和柱状人头模型(cylinder head model,CHM)的人脸三维运动跟踪方案,具体包括:1)融合多种观测信息来降低OAM的光照敏感性和个体相关性;2)针对OAM适合跟踪局...提出了一种在粒子滤波框架下的结合在线外观模型(online appearance model,OAM)和柱状人头模型(cylinder head model,CHM)的人脸三维运动跟踪方案,具体包括:1)融合多种观测信息来降低OAM的光照敏感性和个体相关性;2)针对OAM适合跟踪局部运动但在大姿态下会跟踪失败的问题,将OAM与适合于大姿态下全局运动跟踪的CHM结合起来,在当前帧将CHM匹配得到的全局运动参数作为OAM匹配的初始值,将OAM匹配得到的人脸运动参数作为下一帧CHM匹配的初始值;3)基于局部优化和改进重采样来改进粒子运动滤波策略.实验表明:该系统在大姿态、表情剧烈变化、遮挡和强光照下能得到较好的跟踪效果,且OAM+CHM的跟踪正确率高于OAM的24%,OAM+CHM的姿态跟踪范围大于OAM的11%.主观实验表明:由跟踪得到的人脸运动参数合成的虚拟人脸具有较高的辨识度.展开更多
基金supported by the National Natural Science Foundation of China(61903305,62073267)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.
文摘提出了一种在粒子滤波框架下的结合在线外观模型(online appearance model,OAM)和柱状人头模型(cylinder head model,CHM)的人脸三维运动跟踪方案,具体包括:1)融合多种观测信息来降低OAM的光照敏感性和个体相关性;2)针对OAM适合跟踪局部运动但在大姿态下会跟踪失败的问题,将OAM与适合于大姿态下全局运动跟踪的CHM结合起来,在当前帧将CHM匹配得到的全局运动参数作为OAM匹配的初始值,将OAM匹配得到的人脸运动参数作为下一帧CHM匹配的初始值;3)基于局部优化和改进重采样来改进粒子运动滤波策略.实验表明:该系统在大姿态、表情剧烈变化、遮挡和强光照下能得到较好的跟踪效果,且OAM+CHM的跟踪正确率高于OAM的24%,OAM+CHM的姿态跟踪范围大于OAM的11%.主观实验表明:由跟踪得到的人脸运动参数合成的虚拟人脸具有较高的辨识度.