多方隐私集合交集(multiparty private set intersection,MPSI)作为安全计算领域一种保护数据安全的计算技术,支持在不泄露任何参与方隐私的前提下,计算多个参与方数据集的交集,可通过同态加密、不经意传输等技术手段实现.但现有基于同...多方隐私集合交集(multiparty private set intersection,MPSI)作为安全计算领域一种保护数据安全的计算技术,支持在不泄露任何参与方隐私的前提下,计算多个参与方数据集的交集,可通过同态加密、不经意传输等技术手段实现.但现有基于同态加密的MPSI协议存在计算效率低、交互轮数多等问题,且通过交互无法实现交集用户保密数据的计算.为此,首先基于布隆过滤器和ElGamal算法提出了n方交集用户的秘密信誉值比较协议.进一步针对查询交集失败的问题,基于信誉值过滤器和多密钥加解密,提出用户交集基数协议并完成多方秘密信誉值评估.实验结果表明,研究提出的2种协议满足半诚实安全,可抵抗n-1个参与方的合谋且执行时间优于其他方案.展开更多
文摘多方隐私集合交集(multiparty private set intersection,MPSI)作为安全计算领域一种保护数据安全的计算技术,支持在不泄露任何参与方隐私的前提下,计算多个参与方数据集的交集,可通过同态加密、不经意传输等技术手段实现.但现有基于同态加密的MPSI协议存在计算效率低、交互轮数多等问题,且通过交互无法实现交集用户保密数据的计算.为此,首先基于布隆过滤器和ElGamal算法提出了n方交集用户的秘密信誉值比较协议.进一步针对查询交集失败的问题,基于信誉值过滤器和多密钥加解密,提出用户交集基数协议并完成多方秘密信誉值评估.实验结果表明,研究提出的2种协议满足半诚实安全,可抵抗n-1个参与方的合谋且执行时间优于其他方案.