In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参...视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参考,梳理了VSLAM的研究现状和最新进展。首先,深入探讨了机器人视觉SLAM算法,根据不同的传感器类型,概述了六种主流的视觉SLAM算法。对这些算法的基本原理进行系统分析,并对其中的经典算法进行了精炼总结。进一步地,将视觉SLAM算法分类为基于特征、基于直接法和基于学习的算法三大类,并详细探讨了各自的优缺点。最后,展望了视觉SLAM技术未来的发展方向,重点关注了深度学习、多传感器融合及实时性能优化等关键研究领域。展开更多
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
文摘视觉即时定位与建图(visual simultaneous localization and mapping,VSLAM)技术利用视觉传感器分析图像信息,使机器人在未知环境中实现自主定位和实时三维地图构建,是机器人导航和自动驾驶等任务的关键。为了给研究人员提供有价值的参考,梳理了VSLAM的研究现状和最新进展。首先,深入探讨了机器人视觉SLAM算法,根据不同的传感器类型,概述了六种主流的视觉SLAM算法。对这些算法的基本原理进行系统分析,并对其中的经典算法进行了精炼总结。进一步地,将视觉SLAM算法分类为基于特征、基于直接法和基于学习的算法三大类,并详细探讨了各自的优缺点。最后,展望了视觉SLAM技术未来的发展方向,重点关注了深度学习、多传感器融合及实时性能优化等关键研究领域。