期刊文献+
共找到257篇文章
< 1 2 13 >
每页显示 20 50 100
Automatic modulation recognition of radiation source signals based on two-dimensional data matrix and improved residual neural network
1
作者 Guanghua Yi Xinhong Hao +3 位作者 Xiaopeng Yan Jian Dai Yangtian Liu Yanwen Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期364-373,共10页
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ... Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR. 展开更多
关键词 Automatic modulation recognition Radiation source signals Two-dimensional data matrix residual neural network Depthwise convolution
在线阅读 下载PDF
Chinese named entity recognition with multi-network fusion of multi-scale lexical information
2
作者 Yan Guo Hong-Chen Liu +3 位作者 Fu-Jiang Liu Wei-Hua Lin Quan-Sen Shao Jun-Shun Su 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第4期53-80,共28页
Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is ... Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision. 展开更多
关键词 Bi-directional long short-term memory(BiLSTM) Chinese named entity recognition(CNER) Iterated dilated convolutional neural network(IDCNN) Multi-network integration multi-scale lexical features
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
3
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis Deep learning multi-scale convolution Open-circuit convolutional neural network
在线阅读 下载PDF
自适应卷积注意力与掩码结构协同的显著目标检测
4
作者 朱磊 袁金垚 +1 位作者 王文武 蔡小嫚 《电子与信息学报》 北大核心 2025年第1期260-270,共11页
显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点... 显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点的密集预测方式以获取像素显著值,然而该方式不符合基于人类视觉系统的场景解析机制,即人眼通常对语义区域进行整体分析而非关注像素级信息;(2)增强上下文信息关联在SOD任务中受到广泛关注,但通过Transformer主干结构获取长程关联特征不一定具有优势。SOD应更关注目标在适当区域内其中心-邻域差异性而非全局长程依赖。针对上述问题,该文提出一种新的显著目标检测模型,将CNN形式的自适应注意力和掩码注意力集成到网络中,以提高显著目标检测的性能。该算法设计了基于掩码感知的解码模块,通过将交叉注意力限制在预测的掩码区域来感知图像特征,有助于网络更好地聚焦于显著目标的整体区域。同时,该文设计了基于卷积注意力的上下文特征增强模块,与Transformer逐层建立长程关系不同,该模块仅捕获最高层特征中的适当上下文关联,避免引入无关的全局信息。该文在4个广泛使用的数据集上进行了实验评估,结果表明,该文提出的方法在不同场景下均取得了显著的性能提升,具有良好的泛化能力和稳定性。 展开更多
关键词 显著目标检测 卷积神经网络形式的自适应注意力 掩码注意力 特征增强
在线阅读 下载PDF
基于深度子领域适应卷积神经网络的结构损伤识别
5
作者 张健飞 曹雨 《振动与冲击》 北大核心 2025年第3期251-260,共10页
针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结... 针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结构为目标域,以有限元模型为源域,根据损伤类别将源域和目标域划分成一系列子领域。在CNN中嵌入子领域适应模块,构建DSACNN模型,通过最小化源域上的损伤分类误差和领域之间的局部最大均值差异,对齐两个领域对应子领域的特征、建立特征与损伤类别之间的映射,从而将源域上的损伤识别能力迁移到目标域之上。模型的训练无需已知目标域样本的损伤标签,采用预训练全局领域适应提高其伪标签的准确率。试验结果表明:与全局领域适应模型相比,基于预训练全局领域适应的DSACNN模型在模拟目标域上准确率最大提高幅度达到21.8%,在实测目标域上提高了9.6%,具有更强的泛化能力。 展开更多
关键词 结构损伤识别 子领域适应 局部最大均值差异 卷积神经网络(CNN)
在线阅读 下载PDF
一种基于神经网络的航磁数据噪声识别和抑制方法
6
作者 冯进凯 李姗姗 +3 位作者 何兆超 范昊鹏 李新星 范雕 《中国惯性技术学报》 北大核心 2025年第1期18-26,共9页
航空磁力测量极易受到外界因素的干扰,噪声抑制是航磁数据处理中的关键一环。为高效识别和抑制航磁测线中存在的随机噪声,提高航磁测量精度,将神经网路方法引入到航磁测线数据的处理中,搭建了涵盖磁测数据噪声识别和噪声抑制的网络,并... 航空磁力测量极易受到外界因素的干扰,噪声抑制是航磁数据处理中的关键一环。为高效识别和抑制航磁测线中存在的随机噪声,提高航磁测量精度,将神经网路方法引入到航磁测线数据的处理中,搭建了涵盖磁测数据噪声识别和噪声抑制的网络,并提出了一套适配于该网络的数据处理流程。仿真实验表明,所搭建的模型可以实现航磁测线的噪声识别和抑制,模型对验证集中的三种类型的含噪测线识别准确率达到99.85%;针对于不同类型的测线数据,噪声抑制效果相比于传统的中值滤波方法、小波滤波方法和经验模态分解方法均有不同程度的提升。实测数据实验表明,模型对航磁测线的噪声识别率为97.78%,而且能够适配实测数据中的各种噪声类别并达到较好的去噪效果,模型不受输入测线长度限制,使用更加方便灵活。 展开更多
关键词 卷积神经网络 残差卷积神经网络 STFT转换 噪声识别 航磁信号去噪
在线阅读 下载PDF
面向人体异常行为识别的FDS-ABPG-GoogLeNet模型研究
7
作者 李一帆 李聪聪 +1 位作者 李亚南 王斌 《现代电子技术》 北大核心 2025年第6期136-146,共11页
随着人口老龄化的加剧,老年人异常行为的识别技术已成为医疗保健领域亟需解决的关键问题。目前的异常行为识别算法面临一个挑战,即无法确保在识别多种异常行为的同时提高模型的识别准确率与计算效率。为解决此问题,提出一种FDS-ABPG-Goo... 随着人口老龄化的加剧,老年人异常行为的识别技术已成为医疗保健领域亟需解决的关键问题。目前的异常行为识别算法面临一个挑战,即无法确保在识别多种异常行为的同时提高模型的识别准确率与计算效率。为解决此问题,提出一种FDS-ABPG-GoogLeNet模型。该模型采用了三种不同层级的改进Inception模块,并将这些模块在网络深层和浅层结构中并行连接,在中层结构中引入残差结构,通过特征融合的方式显著提高了网络的计算效率和识别准确率。同时,针对异常行为数据集中动作单一的问题,自建了包含多种异常动作的数据集,并通过将一维动作时序数据二维图形化处理后使得行为动作特征更易于提取。实验结果表明,所提FDS-ABPG-GoogLeNet模型的准确率、灵敏度和特异性分别达到99.40%、99.49%和99.93%。 展开更多
关键词 异常行为识别 Inception模块 残差结构 特征融合 特征提取 卷积神经网络
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
8
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于动态自适应计算引擎的MobileNetV3网络加速器设计
9
作者 项浩斌 杨瑞敏 +2 位作者 吴文涛 李春雷 董燕 《电子技术应用》 2025年第1期8-17,共10页
现有面向高效轻量化MobileNetV3网络的加速方法通常采用高度定制的计算引擎进行模型计算,从而限制了加速器的可扩展性使其仅适用于小型网络或资源丰富的硬件平台。针对此问题,提出了基于动态自适应计算引擎的MobileNetV3网络加速器。首... 现有面向高效轻量化MobileNetV3网络的加速方法通常采用高度定制的计算引擎进行模型计算,从而限制了加速器的可扩展性使其仅适用于小型网络或资源丰富的硬件平台。针对此问题,提出了基于动态自适应计算引擎的MobileNetV3网络加速器。首先,设计了局部感知区域卷积的流水线推理架构实现特征、权重的高度并行处理和缓冲调度。其次,提出全局自适应的点卷积方法优化点卷积,并结合空间探索获得最优的参数配置以实现最大计算并行性。此外,加速器可以根据模型参数变化动态配置以适应不同场景。实验结果显示加速器推理速度为8 F/s,是现有方法速度的2.7倍。 展开更多
关键词 卷积神经网络 并行计算 动态自适应 边缘设备 硬件加速
在线阅读 下载PDF
基于改进轻量化神经网络的干扰识别方法
10
作者 付亦凡 阮航 +1 位作者 周东平 穆贺强 《现代防御技术》 北大核心 2025年第2期91-98,共8页
针对战场实战电磁对抗作战中,大量雷达干扰信号可以被简单迅速地生成,使用传统卷积神经网络对雷达干扰进行识别存在规模大,难以在小型化装备上搭载的问题。提出一种改进的轻量化卷积神经网络,通过在传统神经网络中使用动态卷积核尺寸技... 针对战场实战电磁对抗作战中,大量雷达干扰信号可以被简单迅速地生成,使用传统卷积神经网络对雷达干扰进行识别存在规模大,难以在小型化装备上搭载的问题。提出一种改进的轻量化卷积神经网络,通过在传统神经网络中使用动态卷积核尺寸技术并添加批量归一化层技术,提高网络的识别效能。通过提取干扰信号时频特征,构建训练集与测试集对网络进行训练。仿真实验表明,该网络对6种干扰信号在-8 dB干噪比条件下识别准确率达到96%以上,对比其他网络具有更好的识别准确效能。 展开更多
关键词 雷达有源干扰 卷积神经网络 轻量化 动态卷积核 特征提取
在线阅读 下载PDF
双注意力驱动的微小缺陷识别方法研究
11
作者 邹林丰 邓耀华 +1 位作者 陈冠浩 张紫琳 《中国测试》 北大核心 2025年第3期162-169,共8页
针对深度卷积提取过程中微小缺陷特征消失问题,该文提出融合双注意力机制和跃进残差结构的微小缺陷识别深度卷积网络模型,该模型在训练过程中分别在通道维度和空间维度将权重更多地偏向目标特征,更多地关注到微小缺陷特征,抑制冗余缺陷... 针对深度卷积提取过程中微小缺陷特征消失问题,该文提出融合双注意力机制和跃进残差结构的微小缺陷识别深度卷积网络模型,该模型在训练过程中分别在通道维度和空间维度将权重更多地偏向目标特征,更多地关注到微小缺陷特征,抑制冗余缺陷特征;同时为了进一步缓解深度卷积中微小缺陷特征消失的问题,设计跃进残差结构通过少量的支路连接将微小缺陷特征传递到深层网络,既减少微小缺陷特征漏检,同时提高支路卷积计算速度。以实际采集的布匹缺陷数据集开展模型测试实验。该文提出的模型相比于ResNet50、ResNet101,微小缺陷的识别率分别提高6.79%和6.88%,证明该文模型在微小缺陷识别任务中的有效性。 展开更多
关键词 微小缺陷识别 双注意力机制 残差网络 深度卷积神经网络
在线阅读 下载PDF
基于卷积神经网络与支持向量机的适配器落点预测方法
12
作者 苏政宇 杨宝生 +3 位作者 杨婧 唐静楠 姜毅 邓月光 《兵工学报》 北大核心 2025年第2期91-102,共12页
针对发射过程适配器落点预测算法存在的求解时间长、耗费资源多等问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)与支持向量机(Support Vector Machine,SVM)算法的适配器落点预测模型。基于欧拉角描述建立发射过程... 针对发射过程适配器落点预测算法存在的求解时间长、耗费资源多等问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)与支持向量机(Support Vector Machine,SVM)算法的适配器落点预测模型。基于欧拉角描述建立发射过程适配器动力学运动模型,并通过四阶龙格库塔法对适配器运动轨迹进行数值求解,获得大量的适配器运动状态参数和落点信息;提出CNN-SVM的适配器落点预测模型,采用Adam优化器优化CNN网络性能,并通过网格搜索法获得SVM最佳的超参数。研究结果表明:CNN-SVM模型对适配器落点预测具有较好的求解精度和较强的泛化性能,其训练集和测试集的R 2值均大于0.99,同时该模型的平均绝对误差均小于0.1 m;在相同的计算资源且满足任务预测精度的条件下,其求解时间仅为传统数值积分方法的8.5%。该模型在实际应用中具备显著的优势,为发射过程中适配器分离落点快速预测提供了一种有效的解决方案。 展开更多
关键词 落点预测 适配器 卷积神经网络 支持向量机
在线阅读 下载PDF
基于1D-ResNet的沥青混合料光谱分类识别方法
13
作者 王晋军 周兴林 《现代电子技术》 北大核心 2025年第8期139-144,共6页
使用近红外光谱技术对沥青混合料的老化程度进行快速有效评估,对于沥青道路养护具有重要意义。为了实现不同老化程度沥青混合料的快速准确分类,提出一种基于一维残差卷积神经网络(1D-ResNet)的沥青混合料光谱分类方法。该方法是在卷积... 使用近红外光谱技术对沥青混合料的老化程度进行快速有效评估,对于沥青道路养护具有重要意义。为了实现不同老化程度沥青混合料的快速准确分类,提出一种基于一维残差卷积神经网络(1D-ResNet)的沥青混合料光谱分类方法。该方法是在卷积神经网络链式结构的基础上引入残差模块来构建1D-ResNet分类模型。首先对近红外光谱数据间隔平均,并进行二阶导数(2nd D)及标准正态变量变换(SNV)预处理;然后将归一化的平均光谱、2nd D光谱及SNV光谱进行光谱序列融合;最后将融合光谱数据作为模型的输入,实现对不同老化程度沥青混合料的分类。实验结果表明:对光谱数据进行间隔平均后,1D-ResNet模型分类准确率为88.38%,采用光谱序列融合后分类准确率达98.86%,能够实现对沥青混合料的准确分类识别。 展开更多
关键词 沥青混合料 光谱分类 一维残差卷积神经网络 光谱预处理 序列融合 间隔平均法
在线阅读 下载PDF
基于程序语义与度量的代码缺陷检测
14
作者 卢跃 嵇友晴 +2 位作者 周礼亮 吕青 张迎周 《中北大学学报(自然科学版)》 2025年第1期105-115,共11页
软件中存在的代码缺陷严重影响了软件用户使用的体验感和安全性,传统的代码缺陷检测方法存在准确率较低的问题,而结合深度学习的现有方法的检测粒度较粗,检测效果也不够理想。为此,本文提出了一种基于程序语义与度量的代码缺陷检测方法... 软件中存在的代码缺陷严重影响了软件用户使用的体验感和安全性,传统的代码缺陷检测方法存在准确率较低的问题,而结合深度学习的现有方法的检测粒度较粗,检测效果也不够理想。为此,本文提出了一种基于程序语义与度量的代码缺陷检测方法。该方法采用基于LLVM IR的代码缺陷的兴趣点检测算法,使用轻量级符号化程序切片工具SymPas获取与缺陷兴趣点相关的程序切片。通过预训练模型将程序切片代码片段转化为向量表示,并融合指令级切片度量——认知复杂度度量,深入分析了切片语句之间的关系和特征。通过构建混合模型ResCNN-GRU进行训练,将提取的特征进行了有效融合和学习。实验结果表明,本文利用符号化程序切片技术细化了漏洞检测的粒度,在中间表示LLVM IR下融合的语义和度量信息能更好地表示缺陷代码语句间的关系和特征,构建的混合模型一定程度上解决了时间序列问题以及样本数量不均衡问题,相比其他先进方法,本文方法的准确率达到了94.1%。 展开更多
关键词 预训练模型 程序切片 切片认知域 残差网络 卷积神经网络 门控制神经网络
在线阅读 下载PDF
基于高光谱和卷积神经网络的西兰花农药残留检测
15
作者 王丹 栾雨晴 +1 位作者 谭佐军 魏薇 《食品工业科技》 北大核心 2025年第6期1-8,共8页
农产品农药残留检测是保证农产品食用安全的重要环节,而传统检测方法步骤繁琐、成本高昂。本文利用高光谱技术结合机器学习算法和深度学习算法,以西兰花农药残留检测为样本,提供了一种简便快速、成本低、无损的西兰花农药残留检测方法... 农产品农药残留检测是保证农产品食用安全的重要环节,而传统检测方法步骤繁琐、成本高昂。本文利用高光谱技术结合机器学习算法和深度学习算法,以西兰花农药残留检测为样本,提供了一种简便快速、成本低、无损的西兰花农药残留检测方法。研究通过采集喷洒了不同种类农药和清水的西兰花样本400~1000 nm高光谱图像,经过多元散射校正(MSC)、Savitzky-Golay卷积平滑(SG平滑)两种数据预处理方法,和主成分分析法(PCA)、竞争性自适应重加权算法(CARS)、连续投影算法(SPA)三种数据降维后,建立支持向量机(SVM)识别模型进行农药残留判别。得到SVM-SG-SPA组合判别效果最好,其对高效氯氰菊酯、毒死蜱、吡虫啉和清水的识别精度分别达到92.86%、94.29%、91.43%和92.86%。用原始光谱数据建立一维卷积神经网络(1D-CNN)模型,其对高效氯氰菊酯、毒死蜱、吡虫啉和清水的识别精度达到94.29%、95.71%、94.29%和97.14%,识别精度均高于SVM模型。结果表明,高光谱成像技术结合一维卷积神经网络的深度学习算法,不仅简化了对西兰花农药残留的识别过程,还提升了识别效率和识别精度。 展开更多
关键词 高光谱技术 西兰花 农药残留识别 卷积神经网络
在线阅读 下载PDF
基于多尺度注意力机制的荧光图像分割
16
作者 汤珺 曹志兴 堵威 《激光杂志》 北大核心 2025年第1期142-151,共10页
针对荧光细胞图像分割中细胞轮廓重叠、形态多样等问题,本研究提出了一种结合自适应多尺度注意力机制与边界敏感损失函数的分割算法。首先,为了提升模型对多尺度细胞形态的适应能力,提出了自适应多尺度通道注意力机制,并与特征金字塔结... 针对荧光细胞图像分割中细胞轮廓重叠、形态多样等问题,本研究提出了一种结合自适应多尺度注意力机制与边界敏感损失函数的分割算法。首先,为了提升模型对多尺度细胞形态的适应能力,提出了自适应多尺度通道注意力机制,并与特征金字塔结合构建多尺度注意力金字塔结构,提高网络对复杂细胞形状特征的提取能力;其次,设计了一种边界敏感的交叉熵损失函数,通过对细胞边界区域的预测给予更高的权重,增强了网络对细胞边缘的识别精度。实验结果表明,所提方法在荧光细胞图像数据集上的平均Dice系数和平均IoU系数分别高于现有先进模型,证明了本研究方法在荧光图像分割任务中的有效性。 展开更多
关键词 荧光成像技术 深度学习 图像分割 残差神经网络 注意力机制
在线阅读 下载PDF
基于残差BiLSTM和改进CBAM的航迹关联方法
17
作者 贾燎原 曹伟 +2 位作者 张晓峰 陆翔 周恒亮 《火力与指挥控制》 北大核心 2025年第2期100-106,115,共8页
针对目前智能航迹关联算法关联准确率较低的问题,提出一种由残差网络、双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)与改进的卷积注意力模块(improved convolutional block attention module,ICBAM)结合而成的残差... 针对目前智能航迹关联算法关联准确率较低的问题,提出一种由残差网络、双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)与改进的卷积注意力模块(improved convolutional block attention module,ICBAM)结合而成的残差BiLSTM-ICBAM航迹关联模型。在BiLSTM模型的基础上引入残差网络,增强模型提取航迹上下游特征的同时抑制网络退化问题;加入改进的CBAM注意力模块,分析输入信息与当前航迹特征的相关性并突出关键特征的影响,进而增强局部特征提取能力以及误差跟踪能力;在航迹关联数据上的实验结果表明,残差BiLSTM-ICBAM航迹关联模型比现有方法在准确率、稳定性中表现出了明显的性能优势。 展开更多
关键词 航迹关联 残差网络 双向长短时记忆神经网络 卷积注意力模块
在线阅读 下载PDF
基于一维残差卷积神经网络的Pi2脉动识别模型
18
作者 张怡悦 邹自明 方少峰 《空间科学学报》 北大核心 2025年第1期66-81,共16页
Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,... Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,如何有效地判断某段地磁场分量观测数据中是否有Pi2脉动发生,是构建Pi2脉动识别模型的关键.利用子午工程磁通门磁力仪观测的地磁场分量数据,基于一维残差卷积神经网络(One-Dimensional Residual Convolutional Neural Network,1D-ResCNN),构建了一个端到端的Pi2脉动识别模型,用于判别某段地磁场分量观测数据中是否有Pi2脉动发生.实验结果表明,该模型与现有公开发表的Pi2脉动机器学习识别模型相比,具有更高的识别准确率和更低的虚报率、漏报率. 展开更多
关键词 Pi2脉动 Pi2脉动识别模型 一维残差卷积神经网络
在线阅读 下载PDF
基于逐次变分模态分解和CBAM-ResNet的滚动轴承故障诊断方法
19
作者 陈志刚 陶子纯 +1 位作者 王衍学 史梦瑶 《振动与冲击》 北大核心 2025年第4期298-304,312,共8页
针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBA... 针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBAM-ResNet)的轴承故障诊断方法。首先对轴承振动信号进行SVMD分解成一系列本征模态分量,根据包络熵和峭度融合评价指标选择含故障特征明显的模态分量并重构;将重构信号进行短时傅里叶变换得到时频图像。之后利用CBAM能够自适应捕捉图形特征的特点,把重构信号的时频图像输入CBAM-ResNet模型进行特征提取和故障模式识别。在CBAM-ResNet模型训练过程中,使用迁移学习的方法初始化ResNet模型的参数来提高模型的泛化性。与其他传统模型相比,该研究的分类准确率高达96.68%,具有更强的故障特征提取能力。试验结果表明,CBAM-ResNet模型在变工况环境下也具有较高的识别精度。 展开更多
关键词 故障诊断 滚动轴承 逐次变分模态分解 卷积注意力模块 残差神经网络
在线阅读 下载PDF
改进YOLOv8n的林业害虫检测方法
20
作者 陈万志 袁航 《北京林业大学学报》 北大核心 2025年第2期119-131,共13页
【目的】针对现有林业害虫检测方法检测速度慢,检测类别少,小目标害虫检测效果差等问题,提出了一种改进YOLOv8n的林业害虫检测方法。【方法】首先,采用高效多尺度级联注意力特征提取网络EfficientViT作为改进模型的主干网络,降低计算复... 【目的】针对现有林业害虫检测方法检测速度慢,检测类别少,小目标害虫检测效果差等问题,提出了一种改进YOLOv8n的林业害虫检测方法。【方法】首先,采用高效多尺度级联注意力特征提取网络EfficientViT作为改进模型的主干网络,降低计算复杂度,提高检测速度;其次,通过构建多尺度自适应特征融合模块DA-C2F提升模型在复杂背景下害虫目标的聚焦能力和识别精度,此外新增的小目标检测头XSH能够进一步提升小目标害虫的检测能力;最后,采用基于最小点距离交并比损失函数MPDIoU作为模型的边界框损失,提升网络收敛速度,进一步增强害虫目标的定位准确率。【结果】改进模型的检测精确率、召回率、平均精度、平均精度均值(mAP50-95)和F_(1)分数分别达到98.6%、95.7%、98.3%、85.6%和0.979,前4者较原模型分别提升了3.9、2.6、2.8、2.5个百分点,F_(1)分数提升了4.4%;检测速度(帧率)达到了95帧/秒,提升了15.9%,优于更轻量级的模型。此外,对比其他检测模型,改进模型对飞蛾类害虫的检测精确率提升了11.2个百分点,并且两种独立飞蛾害虫综合检测的表现也更为优异。【结论】本研究提出的方法对于林业害虫的检测准确度更高,检测速度更快,且对多类别害虫的检测精度更高,改进模型的泛化能力更强。 展开更多
关键词 深度学习 卷积神经网络(CNN) 林业害虫检测 YOLOv8n 多尺度级联注意力特征提取网络 多尺度自适应特征融合 小目标检测头
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部