The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A...The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.展开更多
Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were empl...Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were employed to measure the strains in transverse loading case to validate the finite element analysis which was conducted using ANSYS software.Good agreement was obtained between the two methods.It was observed that stiffening the composite shell with helical ribs decreased the average equivalent Von Mises stress on the shell.The reduction of the stress seemed to be higher in the intersection of two ribs.It was also seen that the stress reduction ratio was higher when the structure was under bending compared to torsion and axial compression.The reduction ratio was approximately 75% in pure bending in the intersection point of the ribs,while it was approximately 25% in torsion.Therefore,it is concluded that the presence of the ribs is more effective under bending.Failure analysis was done using Tsai-Wu criterion.The ribs were observed to result in maximum and minimum increase in the failure load of the structure under transverse bending and torsional loading,respectively.展开更多
Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock...Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.展开更多
The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur inv...The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur involute pinion were introduced, and their relative errors are below 10%, except edge contact, which turns out that these two methods can compute contact stress of face-gear drive correctly and effectively. An agreement of the localized bearing contact stress is gotten for these two methods, making sure that the calculation results of FEM are reliable. The loaded meshing simulations of multi-tooth FEM model were developed, and the determination of the transmission error and the maximal load distribution factor of face-gear drive under torques were given. A formula for the maximal load distribution factor was proposed. By introducing the maximal load distribution factor in multi-tooth contact zone, a method for calculating the maximal contact stress in multi-tooth contact can be given. Compared to FEM, the results of these formulae are proved to be reliable, and the relative errors are below 10%.展开更多
A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical prope...A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects.展开更多
In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,th...In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.展开更多
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor...To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing.展开更多
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac...Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section.展开更多
In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under diff...In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.展开更多
Using the boundary integral equation method, the problem of an external circular crack in a three_dimensional infinite elastic body under asymmetric loadings is investigated. The two_dimensional singular boundary inte...Using the boundary integral equation method, the problem of an external circular crack in a three_dimensional infinite elastic body under asymmetric loadings is investigated. The two_dimensional singular boundary integral equations of the problem were reduced to a system of Abel integral equations by means of Fourier series and hypergeometric functions. The exact solutions of stress intensity factors are obtained for the problem of an external circular crack under asymmetric loadings, which are even more universal than the results obtained by the use of Hankel transform method. The results demonstrate that the boundary integral equation method has great potential as a new analytic method.展开更多
In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate tha...In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate that the biaxial compressive strength of rocks under biaxial compression increases firstly,and subsequently decreases with increase of the intermediate principal stress.The fatigue failure characteristics of the rocks in biaxial fatigue tests are functions of the peak value of fatigue loads,the intermediate principal stress and the rock lithology.With the increase of the peak values of fatigue loads,the fatigue lives of rocks decrease.The intermediate principal stress strengthens the resistance ability of rocks to fatigue loads except considering the strength increasing under biaxial confinements.The fatigue lives of rocks increase with the increase of the intermediate principal stress under the same ratio of the fatigue load and their biaxial compressive strength.The acoustic emission(AE)and fragments studies showed that the sandstone has higher ability to resist the fatigue loads compared to the marble,and the marble generated a greater number of smaller fragments after fatigue failure compared to the sandstone.So,it can be inferred that the rock breaking efficiency and rock burst is higher or severer induced by fatigue loading than that induced by monotonous quasi-static loading,especially for hard rocks.展开更多
The state of clean sand was mainly dependent on its void ratio(density)and confining stress that greatly influenced the mechanical behavior(compression,dilatancy and liquefaction)of clean sand.Confirming whether the c...The state of clean sand was mainly dependent on its void ratio(density)and confining stress that greatly influenced the mechanical behavior(compression,dilatancy and liquefaction)of clean sand.Confirming whether the confining stress was a state variable of sand required precise element tests at different confining stress,especially the tests under very low confining stress whose test data were very limited.In this study,static-dynamic characteristics of clean sand was comprehensively investigated by a unified test program under low and normal confining stress ranging from 5 to 98 kPa,under monotonic/cyclic and drained/undrained conditions,together with the literature available data under confining stress of 1.0 to 3.0 MPa.For monotonic loading tests,the contraction/dilation phase transition was observed for loose sand at low confining stress,and dilatancy angles were stress-dependent.In addition,the liquefaction resistance was observed to increase with reducing of confining stress,and the axial strain varied from compressive to dilative when confining stress increased.Special attention was also paid to the enhancement effect of membrane,and it was observed that its influence on the test results was limited.In addition,the experimental results were proved reliable by reproducibility.展开更多
Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads,...Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar' two ends to the maximum one; and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.展开更多
Super 304 H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power...Super 304 H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304 H parent metal and gas tungsten arc(GTA) welded joints were studied by constant load tests in 45% boiling Mg Cl2 solution. Stress corrosion cracking resistance of Super 304 H stainless steel was deteriorated by GTA welding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.展开更多
基金Project(11102224)supported by the National Natural Science Foundation of ChinaProject(201206370124)supported by the China Scholarship Council,China
文摘The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.
文摘Stress analysis of cylindrical grid-stiffened composite shells was conducted under transverse loading,pure bending,torsion and axial compression under clamped-free boundary condition.Electrical strain gauges were employed to measure the strains in transverse loading case to validate the finite element analysis which was conducted using ANSYS software.Good agreement was obtained between the two methods.It was observed that stiffening the composite shell with helical ribs decreased the average equivalent Von Mises stress on the shell.The reduction of the stress seemed to be higher in the intersection of two ribs.It was also seen that the stress reduction ratio was higher when the structure was under bending compared to torsion and axial compression.The reduction ratio was approximately 75% in pure bending in the intersection point of the ribs,while it was approximately 25% in torsion.Therefore,it is concluded that the presence of the ribs is more effective under bending.Failure analysis was done using Tsai-Wu criterion.The ribs were observed to result in maximum and minimum increase in the failure load of the structure under transverse bending and torsional loading,respectively.
基金Project(2014QNB31)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(51674248)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.
基金Project(50875263) supported by the National Natural Science Foundation of ChinaProject(2011CB706800) supported by the National Basic Research Program of ChinaProject(2010ssxt172) supported by the Natural Science Foundation of Hunan Province,China
文摘The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur involute pinion were introduced, and their relative errors are below 10%, except edge contact, which turns out that these two methods can compute contact stress of face-gear drive correctly and effectively. An agreement of the localized bearing contact stress is gotten for these two methods, making sure that the calculation results of FEM are reliable. The loaded meshing simulations of multi-tooth FEM model were developed, and the determination of the transmission error and the maximal load distribution factor of face-gear drive under torques were given. A formula for the maximal load distribution factor was proposed. By introducing the maximal load distribution factor in multi-tooth contact zone, a method for calculating the maximal contact stress in multi-tooth contact can be given. Compared to FEM, the results of these formulae are proved to be reliable, and the relative errors are below 10%.
基金Project(41672290)supported by the National Natural Science Foundation of ChinaProject(2016J01189)supported by the Natural Science foundation of Fujian Province,China
文摘A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects.
基金Youth Talent Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKZ0270)Youth Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKQZ2021055).
文摘In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.
基金Projects(51174228,51174088,51204068,51274097)supported by the National Natural Science Foundation of China
文摘To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing.
文摘Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section.
基金Projects(51208066,51038002)supported by the National Natural Science Foundation of ChinaProject(20114316120001)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China+5 种基金Project(2012-319-825-150)supported by Application and Basic Research Projects of Ministry of Transport ChinaProject(2013K28)supported by Transportation Science and Technology Plan Projects of Henan Province,ChinaProject(201102)supported by Transportation Science and Technology Plan Projects of Hunan Province,ChinaProject(YB2012B031)supported by Funding Projects of Hunan Provincial Outstanding Doctorate Dissertation,ChinaProject(2014gxjgclkf-002)supported by Open Fund of Key Laboratory of Road Structure and Material of Guangxi Province ChinaProject(kfj120101)supported by Open Fund of the Key Laboratory of Highway Engineering(Changsha University of Science and Technology),China
文摘In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.
文摘Using the boundary integral equation method, the problem of an external circular crack in a three_dimensional infinite elastic body under asymmetric loadings is investigated. The two_dimensional singular boundary integral equations of the problem were reduced to a system of Abel integral equations by means of Fourier series and hypergeometric functions. The exact solutions of stress intensity factors are obtained for the problem of an external circular crack under asymmetric loadings, which are even more universal than the results obtained by the use of Hankel transform method. The results demonstrate that the boundary integral equation method has great potential as a new analytic method.
基金Projects(51774326,41807259)supported by the National Natural Science Foundation of ChinaProject(MDPC201917)supported by Mining Disaster Prevention and Control Ministry Key Laboratory at Shandong University of Science and Technology,China。
文摘In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate that the biaxial compressive strength of rocks under biaxial compression increases firstly,and subsequently decreases with increase of the intermediate principal stress.The fatigue failure characteristics of the rocks in biaxial fatigue tests are functions of the peak value of fatigue loads,the intermediate principal stress and the rock lithology.With the increase of the peak values of fatigue loads,the fatigue lives of rocks decrease.The intermediate principal stress strengthens the resistance ability of rocks to fatigue loads except considering the strength increasing under biaxial confinements.The fatigue lives of rocks increase with the increase of the intermediate principal stress under the same ratio of the fatigue load and their biaxial compressive strength.The acoustic emission(AE)and fragments studies showed that the sandstone has higher ability to resist the fatigue loads compared to the marble,and the marble generated a greater number of smaller fragments after fatigue failure compared to the sandstone.So,it can be inferred that the rock breaking efficiency and rock burst is higher or severer induced by fatigue loading than that induced by monotonous quasi-static loading,especially for hard rocks.
基金Projects(51908288,41627801)supported by the National Natural Science Foundation of China。
文摘The state of clean sand was mainly dependent on its void ratio(density)and confining stress that greatly influenced the mechanical behavior(compression,dilatancy and liquefaction)of clean sand.Confirming whether the confining stress was a state variable of sand required precise element tests at different confining stress,especially the tests under very low confining stress whose test data were very limited.In this study,static-dynamic characteristics of clean sand was comprehensively investigated by a unified test program under low and normal confining stress ranging from 5 to 98 kPa,under monotonic/cyclic and drained/undrained conditions,together with the literature available data under confining stress of 1.0 to 3.0 MPa.For monotonic loading tests,the contraction/dilation phase transition was observed for loose sand at low confining stress,and dilatancy angles were stress-dependent.In addition,the liquefaction resistance was observed to increase with reducing of confining stress,and the axial strain varied from compressive to dilative when confining stress increased.Special attention was also paid to the enhancement effect of membrane,and it was observed that its influence on the test results was limited.In addition,the experimental results were proved reliable by reproducibility.
基金Project(51174192) supported by the National Natural Science Foundation of ChinaProject(BRA2010024) supported by"333"Training Foundation of Jiangsu Province,ChinaProject(CXLX12_0964) supported by Innovation Project of Graduate Students Training of Jiangsu Province,China
文摘Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar' two ends to the maximum one; and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.
文摘Super 304 H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304 H parent metal and gas tungsten arc(GTA) welded joints were studied by constant load tests in 45% boiling Mg Cl2 solution. Stress corrosion cracking resistance of Super 304 H stainless steel was deteriorated by GTA welding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.