Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p...Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs.展开更多
配电网中分布式电源渗透率不断提高,使得输电网与配电网之间的互济需求日益增强。针对输配协同框架内有源配电网(active distribution network,ADN)运行优化不能充分调度配置资源以满足区域自治需求的问题,提出了计及输配电网双向协同...配电网中分布式电源渗透率不断提高,使得输电网与配电网之间的互济需求日益增强。针对输配协同框架内有源配电网(active distribution network,ADN)运行优化不能充分调度配置资源以满足区域自治需求的问题,提出了计及输配电网双向协同的有源配电网多目标分层主动优化模型。该模型以输配电网整体运行的经济性和安全性为目标,以联络线功率为耦合变量,通过机组组合调整输电网火电机组出力,并以配电网重构(distribution network reconfiguration,DNR)为主要策略配置拓扑结构,决策出支撑系统最优运行方式的调度策略。基于目标级联分析法(analytical target cascading,ATC)对输配双向协同的有源配电网多目标主、子问题进行解耦并分层求解。最后,以T6D2及T118D5测试系统为例验证了所提方法的有效性。结果表明,所构建模型能有效应对输配间的“双向流”现象,进一步提升系统全局的可再生能源消纳率,使输配电网整体获得最大经济效益。展开更多
文摘Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs.