There are many motors in operation or on standby in nuclear power plants,and the startup of group motors will have a great impact on the voltage of the emergency bus.At present,there is no special or inexpensive softw...There are many motors in operation or on standby in nuclear power plants,and the startup of group motors will have a great impact on the voltage of the emergency bus.At present,there is no special or inexpensive software to solve this problem,and the experience of engineers is not accurate enough.Therefore,this paper developed a method and system for the startup calculation of group motors in nuclear power plants and proposed an automatic generation method of circuit topology in nuclear power plants.Each component in the topology was given its unique number,and the component class could be constructed according to its type and upper and lower connections.The subordination and topology relationship of switches,buses,and motors could be quickly generated by the program according to the component class,and the simplified direct power flow algorithm was used to calculate the power flow for the startup of group motors according to the above relationship.Then,whether the bus voltage is in the safe range and whether the voltage exceeds the limit during the startup of the group motor could be judged.The practical example was used to verify the effectiveness of the method.Compared with other professional software,the method has high efficiency and low cost.展开更多
Dimensionality reduction methods play an important role in face recognition. Principal component analysis(PCA) and two-dimensional principal component analysis(2DPCA) are two kinds of important methods in this field. ...Dimensionality reduction methods play an important role in face recognition. Principal component analysis(PCA) and two-dimensional principal component analysis(2DPCA) are two kinds of important methods in this field. Recent research seems like that 2DPCA method is superior to PCA method. To prove if this conclusion is always true, a comprehensive comparison study between PCA and 2DPCA methods was carried out. A novel concept, called column-image difference(CID), was proposed to analyze the difference between PCA and 2DPCA methods in theory. It is found that there exist some restrictive conditions when2 DPCA outperforms PCA. After theoretical analysis, the experiments were conducted on four famous face image databases. The experiment results confirm the validity of theoretical claim.展开更多
An attribute recognition model for safe thickness assessment between a concealed karst cave and a tunnel is established based on the attribute mathematic theory.The model can be applied to carrying out risk classifica...An attribute recognition model for safe thickness assessment between a concealed karst cave and a tunnel is established based on the attribute mathematic theory.The model can be applied to carrying out risk classification of the safe thickness between a concealed karst cave and a tunnel and to guarantee construction’s safety in tunnel engineering.Firstly,the assessment indicators and classification standard of safe thickness between a concealed karst cave and a tunnel are studied based on the perturbation method.Then some attribute measurement functions are constructed to compute the attribute measurement of each single index and synthetic attribute measurement.Finally,the identification and classification of risk assessment of safe thickness between a concealed karst cave and a tunnel are recognized by the confidence criterion.The results of two engineering application show that the evaluation results agree well with the site situations in construction.The results provide a good guidance for the tunnel construction.展开更多
Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and pos...Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR).展开更多
Support vector machine(SVM)has a good application prospect for speech recognition problems;still optimum parameter selection is a vital issue for it.To improve the learning ability of SVM,a method for searching the op...Support vector machine(SVM)has a good application prospect for speech recognition problems;still optimum parameter selection is a vital issue for it.To improve the learning ability of SVM,a method for searching the optimal parameters based on integration of predator prey optimization(PPO)and Hooke-Jeeves method has been proposed.In PPO technique,population consists of prey and predator particles.The prey particles search the optimum solution and predator always attacks the global best prey particle.The solution obtained by PPO is further improved by applying Hooke-Jeeves method.Proposed method is applied to recognize isolated words in a Hindi speech database and also to recognize words in a benchmark database TI-20 in clean and noisy environment.A recognition rate of 81.5%for Hindi database and 92.2%for TI-20 database has been achieved using proposed technique.展开更多
基金Key Project of National Natural Science Foundation of China(52237008)Beijing Municipal Education Commission Research Program Funding Project(KM202111232022)。
文摘There are many motors in operation or on standby in nuclear power plants,and the startup of group motors will have a great impact on the voltage of the emergency bus.At present,there is no special or inexpensive software to solve this problem,and the experience of engineers is not accurate enough.Therefore,this paper developed a method and system for the startup calculation of group motors in nuclear power plants and proposed an automatic generation method of circuit topology in nuclear power plants.Each component in the topology was given its unique number,and the component class could be constructed according to its type and upper and lower connections.The subordination and topology relationship of switches,buses,and motors could be quickly generated by the program according to the component class,and the simplified direct power flow algorithm was used to calculate the power flow for the startup of group motors according to the above relationship.Then,whether the bus voltage is in the safe range and whether the voltage exceeds the limit during the startup of the group motor could be judged.The practical example was used to verify the effectiveness of the method.Compared with other professional software,the method has high efficiency and low cost.
基金supported by the support plan for the development of Marxist theoretical discipline in Shanghai in 2017(Marxist theory teaching research on“Young and Middle-aged Talents”project)In 2017,The special topic on“Chinese Citizens’Political Identity Since the 18th CPC National Congress”in the“Research on Xi Jinping’s Important Thoughts In The New Era”held by Shanghai International Studies UniversityThe research has been funded by the basic scientific research fee of the central colleges and universities
基金Projects(50275150,61173052)supported by the National Natural Science Foundation of China
文摘Dimensionality reduction methods play an important role in face recognition. Principal component analysis(PCA) and two-dimensional principal component analysis(2DPCA) are two kinds of important methods in this field. Recent research seems like that 2DPCA method is superior to PCA method. To prove if this conclusion is always true, a comprehensive comparison study between PCA and 2DPCA methods was carried out. A novel concept, called column-image difference(CID), was proposed to analyze the difference between PCA and 2DPCA methods in theory. It is found that there exist some restrictive conditions when2 DPCA outperforms PCA. After theoretical analysis, the experiments were conducted on four famous face image databases. The experiment results confirm the validity of theoretical claim.
基金Projects(51509147,51879153) supported by the National Natural Science Foundation of ChinaProjects(2017JC002,2017JC001) supported by the Fundamental Research Funds of Shandong University,China
文摘An attribute recognition model for safe thickness assessment between a concealed karst cave and a tunnel is established based on the attribute mathematic theory.The model can be applied to carrying out risk classification of the safe thickness between a concealed karst cave and a tunnel and to guarantee construction’s safety in tunnel engineering.Firstly,the assessment indicators and classification standard of safe thickness between a concealed karst cave and a tunnel are studied based on the perturbation method.Then some attribute measurement functions are constructed to compute the attribute measurement of each single index and synthetic attribute measurement.Finally,the identification and classification of risk assessment of safe thickness between a concealed karst cave and a tunnel are recognized by the confidence criterion.The results of two engineering application show that the evaluation results agree well with the site situations in construction.The results provide a good guidance for the tunnel construction.
基金supported by the National Natural Science Foundation of China(6137901061772421)
文摘Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR).
文摘Support vector machine(SVM)has a good application prospect for speech recognition problems;still optimum parameter selection is a vital issue for it.To improve the learning ability of SVM,a method for searching the optimal parameters based on integration of predator prey optimization(PPO)and Hooke-Jeeves method has been proposed.In PPO technique,population consists of prey and predator particles.The prey particles search the optimum solution and predator always attacks the global best prey particle.The solution obtained by PPO is further improved by applying Hooke-Jeeves method.Proposed method is applied to recognize isolated words in a Hindi speech database and also to recognize words in a benchmark database TI-20 in clean and noisy environment.A recognition rate of 81.5%for Hindi database and 92.2%for TI-20 database has been achieved using proposed technique.