短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalou...短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalous factors,HDNNF-CAF)。该模型将邻接矩阵、交通流量矩阵及交通流其他参数矩阵结合异常数据处理理论,进行数据预处理和异常数据识别。建立异常数据时空特征提取理论,捕获异常数据时空信息;利用变分模态分解(VMD)降低交通流数据非平稳性,并提出图卷积网络(GCN)优化Informer理论分别对各个子序列进行特征提取,以组合生成交通流时空信息。最终结合异常数据与交通流数据的时空信息生成预测结果。在真实数据集PeMS04上进行验证,实验结果表明,HDNNF-CAF能够有效识别交通流异常数据,提高预测精度,优于一些现有方法。展开更多
随着互联网中多模态数据的快速增长,跨模态检索技术受到了广泛关注。然而,现实中一些多模态数据存在语义信息缺失,导致模型难以准确提取出其中蕴涵的语义特征。此外,一些多模态数据还包含了与语义无关的冗余信息,干扰了模型对关键信息...随着互联网中多模态数据的快速增长,跨模态检索技术受到了广泛关注。然而,现实中一些多模态数据存在语义信息缺失,导致模型难以准确提取出其中蕴涵的语义特征。此外,一些多模态数据还包含了与语义无关的冗余信息,干扰了模型对关键信息的提取。为此,提出了一种基于信息互补与交叉注意力(ICCA)的跨模态检索方法。该方法利用图卷积网络(GCN)建模多标签和数据之间的关系,以补充多模态数据中缺失的语义信息与多标签中缺失的样本细节信息。此外,交叉注意力子模块利用多标签信息,过滤掉数据中语义无关的冗余信息。为了使语义相似的图像和文本在公共表示空间中实现更好的匹配,还提出了一种语义匹配损失。此损失将多标签嵌入融入到图像和文本的匹配过程中,用于进一步增强公共表示的语义性。在NUS-WIDE、MIRFlickr-25K和MS-COCO这三个广泛使用的数据集上进行实验,实验结果表明,ICCA在这些数据集上的平均精度均值(mean average precision,mAP)分别为0.808、0.859和0.837,显著优于现有方法。展开更多
为准确识别乘客搭乘自动扶梯时的异常行为,避免安全事故的发生,提出了一种基于人体骨架的扶梯乘客异常行为识别方法。首先使用YOLOX-Tiny对视频中乘客位置进行检测,通过Alphapose算法提取骨骼关键点坐标,降低复杂背景的干扰;再使用多流...为准确识别乘客搭乘自动扶梯时的异常行为,避免安全事故的发生,提出了一种基于人体骨架的扶梯乘客异常行为识别方法。首先使用YOLOX-Tiny对视频中乘客位置进行检测,通过Alphapose算法提取骨骼关键点坐标,降低复杂背景的干扰;再使用多流膨胀3D卷积模块增强时空特征提取能力,聚合乘客骨架的全局特征;然后将其输入改进后的时空图卷积网络中提取乘客骨架信息,通过MS-TCN模块扩大接受域以增强时间特征的提取,联合人体关键点注意力模块(Key Point Attention Module,KPAM)提升网络对相似动作的关键骨架的关注度;最后通过Softmax对异常动作进行分类。采集扶梯运行现场视频制作数据集,试验结果表明,本文算法对乘客异常行为的识别精度达到96.1%,可应用于扶梯现场的视频监控系统,提高安全管理信息化水平。展开更多
文摘短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalous factors,HDNNF-CAF)。该模型将邻接矩阵、交通流量矩阵及交通流其他参数矩阵结合异常数据处理理论,进行数据预处理和异常数据识别。建立异常数据时空特征提取理论,捕获异常数据时空信息;利用变分模态分解(VMD)降低交通流数据非平稳性,并提出图卷积网络(GCN)优化Informer理论分别对各个子序列进行特征提取,以组合生成交通流时空信息。最终结合异常数据与交通流数据的时空信息生成预测结果。在真实数据集PeMS04上进行验证,实验结果表明,HDNNF-CAF能够有效识别交通流异常数据,提高预测精度,优于一些现有方法。
文摘随着互联网中多模态数据的快速增长,跨模态检索技术受到了广泛关注。然而,现实中一些多模态数据存在语义信息缺失,导致模型难以准确提取出其中蕴涵的语义特征。此外,一些多模态数据还包含了与语义无关的冗余信息,干扰了模型对关键信息的提取。为此,提出了一种基于信息互补与交叉注意力(ICCA)的跨模态检索方法。该方法利用图卷积网络(GCN)建模多标签和数据之间的关系,以补充多模态数据中缺失的语义信息与多标签中缺失的样本细节信息。此外,交叉注意力子模块利用多标签信息,过滤掉数据中语义无关的冗余信息。为了使语义相似的图像和文本在公共表示空间中实现更好的匹配,还提出了一种语义匹配损失。此损失将多标签嵌入融入到图像和文本的匹配过程中,用于进一步增强公共表示的语义性。在NUS-WIDE、MIRFlickr-25K和MS-COCO这三个广泛使用的数据集上进行实验,实验结果表明,ICCA在这些数据集上的平均精度均值(mean average precision,mAP)分别为0.808、0.859和0.837,显著优于现有方法。
文摘为准确识别乘客搭乘自动扶梯时的异常行为,避免安全事故的发生,提出了一种基于人体骨架的扶梯乘客异常行为识别方法。首先使用YOLOX-Tiny对视频中乘客位置进行检测,通过Alphapose算法提取骨骼关键点坐标,降低复杂背景的干扰;再使用多流膨胀3D卷积模块增强时空特征提取能力,聚合乘客骨架的全局特征;然后将其输入改进后的时空图卷积网络中提取乘客骨架信息,通过MS-TCN模块扩大接受域以增强时间特征的提取,联合人体关键点注意力模块(Key Point Attention Module,KPAM)提升网络对相似动作的关键骨架的关注度;最后通过Softmax对异常动作进行分类。采集扶梯运行现场视频制作数据集,试验结果表明,本文算法对乘客异常行为的识别精度达到96.1%,可应用于扶梯现场的视频监控系统,提高安全管理信息化水平。