Effect of various spatial and energy distributions of fusion neutron sourceon the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated bymeans of the 3-D Monte Carlo code MCNP. A real...Effect of various spatial and energy distributions of fusion neutron sourceon the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated bymeans of the 3-D Monte Carlo code MCNP. A realistic Monte Carlo source model was developed based onthe accurate representation of the spatial distribution and energy spectrum of fusion neutrons tosolve the complicated problem of tokamak fusion neutron source modelling. The results show thatthose simplified source models will introduce significant uncertainties. For accurate estimation ofthe key nuclear responses of the tokamak design and analyses, the use of the realistic source isrecommended. In addition, the accumulation of tritium produced during D-D plasma operation should becarefully considered.展开更多
This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early applic...This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early application of fusion technology. The necessity and feasibility to develop that system in China are illustrated on the basis of prediction of the demand of energy source in the first half of the 21th century, the status of current fission energy supply and the progress in fusion technology in the world. The characteristics of fusion neutron driver and the potential for transmutation of long-lived nuclear wastes and breeding of fissile nuclear fuel in a blanket are analyzed. A scenario of development steps is proposed.展开更多
Gamma-emitting radionuclide ^(99m)Tc is globally used for the diagnosis of various pathological conditions owing to its ideal single-photon emission computed tomography (SPECT) characteristics.However,the short half-l...Gamma-emitting radionuclide ^(99m)Tc is globally used for the diagnosis of various pathological conditions owing to its ideal single-photon emission computed tomography (SPECT) characteristics.However,the short half-life of ^(99m)Tc (T_(1/2)=6 h)makes it difficult to store or transport.Thus,the production of ^(99m)Tc is tied to its parent radionuclide ^(99)Mo (T_(1/2)=66 h).The major production paths are based on accelerators and research reactors.The reactor process presents the potential for nuclear proliferation owing to its use of highly enriched uranium (HEU).Accelerator-based methods tend to use deuterium–tritium(D–T) neutron sources but are hindered by the high cost of tritium and its challenging operation.In this study,a new ^(99)Mo production design was developed based on a deuterium–deuterium (D–D) gas dynamic trap fusion neutron source (GDT-FNS) and a subcritical blanket system (SBS) assembly with a low-enriched uranium (LEU) solution.GDT-FNS can provide a relatively high-neutron intensity,which is one of the advantages of ^(99)Mo production.We provide a Monte Carlo-based neutronics analysis covering the calculation of the subcritical multiplication factor (k_(s)) of the SBS,optimization design for the reflector,shielding layer,and ^(99)Mo production capacity.Other calculations,including the neutron flux and nuclear heating distributions,are also provided for an overall evaluation of the production system.The results demonstrated that the SBS meets the nuclear critical safety design requirement (k_(s)<0.97) and maintained a high ^(99)Mo production capacity.The proposed system can generate approximately 157 Ci ^(99)Mo for a stable 24 h operation with a neutron intensity of 1×10^(14) n/s,which can meet 50%of China’s demand in 2025.展开更多
To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The p...To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The prior design of a GDT-based fusion neutron source was optimized based on a refreshed understanding of GDT operation. A two-step progressive development route of a GDT-based fusion neutron source was suggested. Potential applications of GDT are discussed. Preliminary analyses show that a fusion neutron source based on the GDT concept is suitable for plasma-material interaction research, fusion material and subcomponent testing, and capable of driving a proof-of-principle fusion fission hybrid experimental facility.展开更多
A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping m...A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.展开更多
深度学习(deep learning,DL)应用于推动智能故障诊断的发展,带来了显著的性能提升。然而,现有方法大多无法捕捉机械设备的时间信息和全局特征,无法收集到足够的故障信息。同时,由于运行环境复杂恶劣,单源故障诊断方法难以稳定、广泛地...深度学习(deep learning,DL)应用于推动智能故障诊断的发展,带来了显著的性能提升。然而,现有方法大多无法捕捉机械设备的时间信息和全局特征,无法收集到足够的故障信息。同时,由于运行环境复杂恶劣,单源故障诊断方法难以稳定、广泛地提取故障特征。因此,提出一种基于多源信息融合(multi-source information fusion,MSIF)的连续小波和TransXNet三相异步电机故障诊断新方法,通过提取和整合丰富的特征来提高诊断性能稳定性。首先,搭建三相异步电机故障实验平台,使用加速度传感器与电流传感器采集电机多种工况下的振动信号与电流信号,获得多源信号;其次,提出一种新的轻量级混合网络模块:双动态令牌混合器(dual dynamic token mixer,D-Mixer),其可以动态地利用全局和局部信息,同时注入大的感受野和强大的归纳偏差,而不牺牲输入依赖性,提高了特征提取能力。提出多尺度前馈网络(multi-scale feed-forward network,MS-FFN),在前馈网络中进行多尺度特征聚合。通过交替使用D-Mixer和MS-FFN,构建一种新型的混合CNN-Transformer网络:TransXNet;然后,利用连续小波变换将多源信号进行时频变换,提出数据级融合策略获得多源信息图,将多源信息图输入到TransXNet中进行特征分割以及聚合以完成特征提取,以训练并验证所提出的TransXNet有效性;最后,使用多源测试样本来验证所提出方法的诊断性能。结果表明,基于TransXNet强大的特征提取能力,识别准确率达到100%。通过对比调整兰德指数、归一化互信息、F1分数和准确率4个评价指标以及抗噪性分析,得出所提方法优于目前故障诊断领域最先进的方法(state of the art,SOTA),在故障诊断领域具有很好的前景。展开更多
基金The project supported partly by the National Science Foundation of Anhui Province (No. 0104360)
文摘Effect of various spatial and energy distributions of fusion neutron sourceon the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated bymeans of the 3-D Monte Carlo code MCNP. A realistic Monte Carlo source model was developed based onthe accurate representation of the spatial distribution and energy spectrum of fusion neutrons tosolve the complicated problem of tokamak fusion neutron source modelling. The results show thatthose simplified source models will introduce significant uncertainties. For accurate estimation ofthe key nuclear responses of the tokamak design and analyses, the use of the realistic source isrecommended. In addition, the accumulation of tritium produced during D-D plasma operation should becarefully considered.
文摘This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early application of fusion technology. The necessity and feasibility to develop that system in China are illustrated on the basis of prediction of the demand of energy source in the first half of the 21th century, the status of current fission energy supply and the progress in fusion technology in the world. The characteristics of fusion neutron driver and the potential for transmutation of long-lived nuclear wastes and breeding of fissile nuclear fuel in a blanket are analyzed. A scenario of development steps is proposed.
基金supported by Anhui Provincial Key R&D Program (202104g0102007)Hefei Municipal Natural Science Foundation (2022011)+2 种基金Collaborative Innovation Program of Hefei Science CenterChinese Academy of Sciences(2022HSC CIP024)International Partnership Program of Chinese Academy of Sciences (116134KYSB20200001)。
文摘Gamma-emitting radionuclide ^(99m)Tc is globally used for the diagnosis of various pathological conditions owing to its ideal single-photon emission computed tomography (SPECT) characteristics.However,the short half-life of ^(99m)Tc (T_(1/2)=6 h)makes it difficult to store or transport.Thus,the production of ^(99m)Tc is tied to its parent radionuclide ^(99)Mo (T_(1/2)=66 h).The major production paths are based on accelerators and research reactors.The reactor process presents the potential for nuclear proliferation owing to its use of highly enriched uranium (HEU).Accelerator-based methods tend to use deuterium–tritium(D–T) neutron sources but are hindered by the high cost of tritium and its challenging operation.In this study,a new ^(99)Mo production design was developed based on a deuterium–deuterium (D–D) gas dynamic trap fusion neutron source (GDT-FNS) and a subcritical blanket system (SBS) assembly with a low-enriched uranium (LEU) solution.GDT-FNS can provide a relatively high-neutron intensity,which is one of the advantages of ^(99)Mo production.We provide a Monte Carlo-based neutronics analysis covering the calculation of the subcritical multiplication factor (k_(s)) of the SBS,optimization design for the reflector,shielding layer,and ^(99)Mo production capacity.Other calculations,including the neutron flux and nuclear heating distributions,are also provided for an overall evaluation of the production system.The results demonstrated that the SBS meets the nuclear critical safety design requirement (k_(s)<0.97) and maintained a high ^(99)Mo production capacity.The proposed system can generate approximately 157 Ci ^(99)Mo for a stable 24 h operation with a neutron intensity of 1×10^(14) n/s,which can meet 50%of China’s demand in 2025.
基金supported by the IAEA Coordinate Research Project F1.30.15 Conceptual Development of Steady-State Compact Fusion Neutron Sources,the Knowledge Innovation Projects of Chinese Academy of Sciences(No.KJCX2-YW-N37)National Magnetic Confinement Fusion Science Program of China(No.2011GB114004)
文摘To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The prior design of a GDT-based fusion neutron source was optimized based on a refreshed understanding of GDT operation. A two-step progressive development route of a GDT-based fusion neutron source was suggested. Potential applications of GDT are discussed. Preliminary analyses show that a fusion neutron source based on the GDT concept is suitable for plasma-material interaction research, fusion material and subcomponent testing, and capable of driving a proof-of-principle fusion fission hybrid experimental facility.
基金supported by the National Key R&D Program of China (No. 2017YFE0300106)National Natural Science Foundation of China (Nos. 11935005 and 12075049)the Fundamental Research Funds for the Central Universities(Nos. DUT21TD104 and DUT21LAB110)。
文摘A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.
文摘深度学习(deep learning,DL)应用于推动智能故障诊断的发展,带来了显著的性能提升。然而,现有方法大多无法捕捉机械设备的时间信息和全局特征,无法收集到足够的故障信息。同时,由于运行环境复杂恶劣,单源故障诊断方法难以稳定、广泛地提取故障特征。因此,提出一种基于多源信息融合(multi-source information fusion,MSIF)的连续小波和TransXNet三相异步电机故障诊断新方法,通过提取和整合丰富的特征来提高诊断性能稳定性。首先,搭建三相异步电机故障实验平台,使用加速度传感器与电流传感器采集电机多种工况下的振动信号与电流信号,获得多源信号;其次,提出一种新的轻量级混合网络模块:双动态令牌混合器(dual dynamic token mixer,D-Mixer),其可以动态地利用全局和局部信息,同时注入大的感受野和强大的归纳偏差,而不牺牲输入依赖性,提高了特征提取能力。提出多尺度前馈网络(multi-scale feed-forward network,MS-FFN),在前馈网络中进行多尺度特征聚合。通过交替使用D-Mixer和MS-FFN,构建一种新型的混合CNN-Transformer网络:TransXNet;然后,利用连续小波变换将多源信号进行时频变换,提出数据级融合策略获得多源信息图,将多源信息图输入到TransXNet中进行特征分割以及聚合以完成特征提取,以训练并验证所提出的TransXNet有效性;最后,使用多源测试样本来验证所提出方法的诊断性能。结果表明,基于TransXNet强大的特征提取能力,识别准确率达到100%。通过对比调整兰德指数、归一化互信息、F1分数和准确率4个评价指标以及抗噪性分析,得出所提方法优于目前故障诊断领域最先进的方法(state of the art,SOTA),在故障诊断领域具有很好的前景。