中长期电量预测在编制中长期发电计划、提高新能源消纳以及保障电力系统电量平衡等方面发挥着重要作用。未来气候态预报信息有利于提高中长期电量预测精度,但当前中长期电量预测未能有效挖掘和利用未来气候预报信息,为此,提出了一种考...中长期电量预测在编制中长期发电计划、提高新能源消纳以及保障电力系统电量平衡等方面发挥着重要作用。未来气候态预报信息有利于提高中长期电量预测精度,但当前中长期电量预测未能有效挖掘和利用未来气候预报信息,为此,提出了一种考虑不同风能特征的风电中长期电量预测方法,同时为提高预测模型的适应性,以风能资源气候态预报结果数据为输入,通过构建风能特征挖掘模型,实现了不同预报误差特性数据集的筛选,进而结合风电场实际发电数据,基于灰狼优化算法(grey wolf optimizer,GWO)与长短时记忆网络(long short term memory,LSTM)构建了适应性预测模型。将所提法与当前预测方法相比,结果显示:所提出的中长期电量预测方法实现了沿海某风电场及区域总电量预测,且预测模型的性能更优。研究结果验证了所提方法的有效性和先进性。展开更多
用电数据是智能电网大数据重要组成部分,也是基于人工智能方法进行负荷预测、需求响应以及台区线损治理和反窃电的基础样本数据来源。但用电信息采集设备工作环境复杂,用电数据缺失异常问题不可避免,严重影响数据驱动的效果。该文针对...用电数据是智能电网大数据重要组成部分,也是基于人工智能方法进行负荷预测、需求响应以及台区线损治理和反窃电的基础样本数据来源。但用电信息采集设备工作环境复杂,用电数据缺失异常问题不可避免,严重影响数据驱动的效果。该文针对用电大数据存在的数据缺失、异常噪声等低质量问题,提出一种基于多范数优化的用电数据质量提升新算法,其中针对数据缺失和稀疏脉冲等多种现场采集噪声,采用核范数/1-范数/F-范数优化的低秩矩阵恢复模型和交替方向乘子算法求解,实现缺失数据恢复和异常噪声滤除,提高用电数据质量。所提方法具有不需要先验知识的训练,计算复杂度低的优势。算例结果表明,该文方法可以提高缺失数据恢复精度、改善数据质量,并且通过基于人工智能长短期记忆神经网络(long short term memory,LSTM)方法的短期负荷预测实验证明其可有效提高预测精度,对电力系统基于数据驱动的新兴高级应用具有良好的实际意义。展开更多
文摘中长期电量预测在编制中长期发电计划、提高新能源消纳以及保障电力系统电量平衡等方面发挥着重要作用。未来气候态预报信息有利于提高中长期电量预测精度,但当前中长期电量预测未能有效挖掘和利用未来气候预报信息,为此,提出了一种考虑不同风能特征的风电中长期电量预测方法,同时为提高预测模型的适应性,以风能资源气候态预报结果数据为输入,通过构建风能特征挖掘模型,实现了不同预报误差特性数据集的筛选,进而结合风电场实际发电数据,基于灰狼优化算法(grey wolf optimizer,GWO)与长短时记忆网络(long short term memory,LSTM)构建了适应性预测模型。将所提法与当前预测方法相比,结果显示:所提出的中长期电量预测方法实现了沿海某风电场及区域总电量预测,且预测模型的性能更优。研究结果验证了所提方法的有效性和先进性。
文摘用电数据是智能电网大数据重要组成部分,也是基于人工智能方法进行负荷预测、需求响应以及台区线损治理和反窃电的基础样本数据来源。但用电信息采集设备工作环境复杂,用电数据缺失异常问题不可避免,严重影响数据驱动的效果。该文针对用电大数据存在的数据缺失、异常噪声等低质量问题,提出一种基于多范数优化的用电数据质量提升新算法,其中针对数据缺失和稀疏脉冲等多种现场采集噪声,采用核范数/1-范数/F-范数优化的低秩矩阵恢复模型和交替方向乘子算法求解,实现缺失数据恢复和异常噪声滤除,提高用电数据质量。所提方法具有不需要先验知识的训练,计算复杂度低的优势。算例结果表明,该文方法可以提高缺失数据恢复精度、改善数据质量,并且通过基于人工智能长短期记忆神经网络(long short term memory,LSTM)方法的短期负荷预测实验证明其可有效提高预测精度,对电力系统基于数据驱动的新兴高级应用具有良好的实际意义。