Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in ...Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in tumor metastasis,regulating the migration and adhesion of tumor cells at the primary site.However,as a type of programmed cell death,anoikis is rarely studied in osteosarcoma,especially in the tumor immune microenvironment.This study aims to clarify prognostic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma.Methods:Anoikis-related genes(ANRGs)were obtained from GeneCards.Clinical information and ANRGs expression profiles of osteosarcoma patients were sourced from the therapeutically applicable research to generate effective therapies and Gene Expression Omnibus(GEO)databases.ANRGs highly associated with tumor immune microenvironment were identified by the estimate package and the weighted gene coexpression network analysis(WGCNA)algorithm.Machine learning algorithms were performed to construct long-term survival predictive strategy,each sample was divided into high-risk and low-risk subgroups,which was further verified in the GEO cohort.Finally,based on single-cell RNA-seq from the GEO database,analysis was done on the function of signature genes in the osteosarcoma tumor microenvironment.Results:A total of 51 hub ANRGs closely associated with the tumor microenvironment were identified,from which 3 genes(MERTK,BNIP3,S100A8)were selected to construct the prognostic model.Significant differences in immune cell activation and immune-related signaling pathways were observed between the high-risk and low-risk groups based on tumor microenvironment analysis(all P<0.05).Additionally,characteristic genes within the osteosarcoma microenvironment were identified in regulation of intercellular crosstalk through the GAS6-MERTK signaling pathway.Conclusion:The prognostic model based on ANRGs and tumor microenvironment demonstrate good predictive power and provide more personalized treatment options for patients with osteosarcoma.展开更多
It is necessary to investigate the characteristics of Mesenchymal stem cells(MSCs)derived exosomes,and especially their application in tissue regeneration.Previous studies have shown that inflammatory stimulation enha...It is necessary to investigate the characteristics of Mesenchymal stem cells(MSCs)derived exosomes,and especially their application in tissue regeneration.Previous studies have shown that inflammatory stimulation enhanced the secretion of MSC-derived exosomes with stronger anti-inflammatory protein,cytokine profiles,and functional RNA via altering COX2/PGE2 pathway.Recently,accumulating evidence has also revealed that biophysical cues(especially biomechanical cues)in cell microenvironment have significant effects not only on cells but also on their exosomes.It has been reported that applying bi-axial strain to MSCs induces formation of a stiffer cytoskeleton through mTORC2 signaling,which biases against adipogenic differentiation and toward osteoblastogenesis.At the same time,For example,dimensionality,composition and stiffness of the extracellular matrix(ECM)has been proved to affect the size and composition of exosomes secreted by cancer cells.However,the effects of biomechanical cues in the three-dimensional(3D)microenvironment on stem cell-derived exosomes remains to be unveiled.Therefore,it is important to understand the roles of 3D cell mechanical microenvironment in regulating the characteristics of stem cell-derived exosomes and develop more efficient approaches to enhance their functions.This study aimed to explore the changes in characteristics of exosomes secreted by MSCs in periodontium in response to the matrix strain in 3D.Periodontal ligament stem cells(PDLSCs)were cultured in a 3D strain microenvironment engineered with microscale magnetically stretched collagen hydrogels.The morphology,particle distribution,marker protein expression of PDLSC-derived exosomes were analyzed.Then the pro-osteogenic property of exosomes was evaluated by assessing cell viability,proliferation,migration and osteogenic differentiation of target cells,for instance human bone marrow mesenchymal stem cells(hBMSCs).Detailed characterizations revealed that PDLSC-derived exosomes in the 3D strain mi-croenvironment were with similar morphology,particle distribution and surface markers.Notably,Exosomes secreted by PDLSCs in strain microenvironment were more endocytosed by hBMSCs and were more potent in improving proliferation and migration of hBMSCs,comparing with PDLSCs in non-strain environment.Alizarin red staining and molecular biology experiments confirmed that treatment of exosomes secreted by PDLSCs under mechanical stimulation led to a significant increase in osteogenic differentiation of hBMSCs in vitro.Meanwhile,in vivo study also indicated that PDLSC-derived exosomes obtained from the 3D strain microenvironment could obviously promote new bone formation.Our findings revealed that mechanical cues profoundly affected the characteristics of PDLSC-derived exosomes,especially for their bio-activity,providing a foundation for using the 3D mechanical microenvironment to enhance the osteo-inductive functions of stem cell-derived exosomes in cell-free therapy for bone regeneration.展开更多
Cells in vivo are in a three-dimensional(3D)complicated microenvironment composed of various biological,physical and chemical cues.Although it is well accepted that biological and chemical cues can significantly influ...Cells in vivo are in a three-dimensional(3D)complicated microenvironment composed of various biological,physical and chemical cues.Although it is well accepted that biological and chemical cues can significantly influence cell functions,more and more evidence has also shown that physical cues are also vital.Using today’s micro and nanoscale technologies,creating synthetic but native-like conditions are the prerequisites for understanding cell behaviors.Most research has been carried out on artificial two-dimensional(2D)substrates.However,recent studies showed that cells respond and behave differently in these 2D settings compared to in 3D intricate microenvironment.Therefore,innovative 3D in vitro cellular models with precisely patterned multiple types of cells are needed for re-creating distinct niches and in vitro cell modeling under well-defined and reproducible conditions.In this talk,I will present the 3D nano and microscale tissue engineering methods we are developing for engineering cell spatiotemporal mechanical microenvironment.展开更多
Biomaterial acts as artificial extracellular matrix for providing a provisional three-dimensional (3D) microenvironments to interact biophysically and/or biochemically with cells to regulate cell behaviors,such as cel...Biomaterial acts as artificial extracellular matrix for providing a provisional three-dimensional (3D) microenvironments to interact biophysically and/or biochemically with cells to regulate cell behaviors,such as cell adhesion,migration,prolifera-展开更多
Biomaterials play essential role in regenerative medicine and tissue engineering,which providing a provisional three-dimensional(3D)microenvironments to interact biophysically and/or biochemically with cells to guide ...Biomaterials play essential role in regenerative medicine and tissue engineering,which providing a provisional three-dimensional(3D)microenvironments to interact biophysically and/or biochemically with cells to guide cellular performance[1].It thus spatially and temporally regulates complex cellular process of tissue formation,function and regeneration.展开更多
Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production...Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.展开更多
Combretastatin A-1 phosphate (CA1P) is a tubulin polymerization inhibitor that binds to the colchicine- binding site of tubulin and shows potential anti-tumor activity to acute myelocytic leukemia as reported. We de...Combretastatin A-1 phosphate (CA1P) is a tubulin polymerization inhibitor that binds to the colchicine- binding site of tubulin and shows potential anti-tumor activity to acute myelocytic leukemia as reported. We demon- strated that CA1P also showed an outstanding anti-cancer effect on hepatocellular carcinoma (HCC) in vivo and in vitro. As determined by DCFH-DA dye and Western blot, CA1P induced ROS accumulation and apoptosis in HepG2 cells with the down-regulation of Mcl-1. Additonal western blot and immunofluorescence assays further indi- cated that CA1P inhibited Wnt/β-catenin pathway through GSK-3β activition with an increasing of Mcl phosphoryl- ation and subsequent degradation mediated by tubulin-dynactin p l50-AKT signaling pathway axis. Apoptosis of HepG2 cells induced by CA1P was reversed by the GSK-3β inhibitor ( CHIR-99021 ). Furthermore, determined by immunohistochemistry of an orthotopic HCC tumor model, CA1P showed a significantly effect on tumor associated macrophage (TAM) apoptosis in vitro and eliminated TAM in tumor microenviroment in vivo, while the infiltration of Treg cells and expression of TGF-β were also altered. Adoptive transfer of macrophages reinstated tumor growth treated by CA1P. These results indicated that CA1P presented potent potential on the regulation of hepatocellular carcinoma cells and TAMs, and also revealed a novel anti-HCC mechanism of CA1P, which acted on both cancer cells and tumor microenvironment. The findings would be beneficial for exploring new application of anti-microtubu- lar drugs on oncotherapy.展开更多
基金This work was supported by the National Natural Science Foundation(82172594 and 82373046)the Hunan Graduate Research Innovation Project(CX20230318),China.
文摘Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in tumor metastasis,regulating the migration and adhesion of tumor cells at the primary site.However,as a type of programmed cell death,anoikis is rarely studied in osteosarcoma,especially in the tumor immune microenvironment.This study aims to clarify prognostic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma.Methods:Anoikis-related genes(ANRGs)were obtained from GeneCards.Clinical information and ANRGs expression profiles of osteosarcoma patients were sourced from the therapeutically applicable research to generate effective therapies and Gene Expression Omnibus(GEO)databases.ANRGs highly associated with tumor immune microenvironment were identified by the estimate package and the weighted gene coexpression network analysis(WGCNA)algorithm.Machine learning algorithms were performed to construct long-term survival predictive strategy,each sample was divided into high-risk and low-risk subgroups,which was further verified in the GEO cohort.Finally,based on single-cell RNA-seq from the GEO database,analysis was done on the function of signature genes in the osteosarcoma tumor microenvironment.Results:A total of 51 hub ANRGs closely associated with the tumor microenvironment were identified,from which 3 genes(MERTK,BNIP3,S100A8)were selected to construct the prognostic model.Significant differences in immune cell activation and immune-related signaling pathways were observed between the high-risk and low-risk groups based on tumor microenvironment analysis(all P<0.05).Additionally,characteristic genes within the osteosarcoma microenvironment were identified in regulation of intercellular crosstalk through the GAS6-MERTK signaling pathway.Conclusion:The prognostic model based on ANRGs and tumor microenvironment demonstrate good predictive power and provide more personalized treatment options for patients with osteosarcoma.
基金financially supported by the Young Elite Scientist Sponsorship Program by CAST ( 2018QNRC001)the China Postdoctoral Science Foundation ( 2018M631172)
文摘It is necessary to investigate the characteristics of Mesenchymal stem cells(MSCs)derived exosomes,and especially their application in tissue regeneration.Previous studies have shown that inflammatory stimulation enhanced the secretion of MSC-derived exosomes with stronger anti-inflammatory protein,cytokine profiles,and functional RNA via altering COX2/PGE2 pathway.Recently,accumulating evidence has also revealed that biophysical cues(especially biomechanical cues)in cell microenvironment have significant effects not only on cells but also on their exosomes.It has been reported that applying bi-axial strain to MSCs induces formation of a stiffer cytoskeleton through mTORC2 signaling,which biases against adipogenic differentiation and toward osteoblastogenesis.At the same time,For example,dimensionality,composition and stiffness of the extracellular matrix(ECM)has been proved to affect the size and composition of exosomes secreted by cancer cells.However,the effects of biomechanical cues in the three-dimensional(3D)microenvironment on stem cell-derived exosomes remains to be unveiled.Therefore,it is important to understand the roles of 3D cell mechanical microenvironment in regulating the characteristics of stem cell-derived exosomes and develop more efficient approaches to enhance their functions.This study aimed to explore the changes in characteristics of exosomes secreted by MSCs in periodontium in response to the matrix strain in 3D.Periodontal ligament stem cells(PDLSCs)were cultured in a 3D strain microenvironment engineered with microscale magnetically stretched collagen hydrogels.The morphology,particle distribution,marker protein expression of PDLSC-derived exosomes were analyzed.Then the pro-osteogenic property of exosomes was evaluated by assessing cell viability,proliferation,migration and osteogenic differentiation of target cells,for instance human bone marrow mesenchymal stem cells(hBMSCs).Detailed characterizations revealed that PDLSC-derived exosomes in the 3D strain mi-croenvironment were with similar morphology,particle distribution and surface markers.Notably,Exosomes secreted by PDLSCs in strain microenvironment were more endocytosed by hBMSCs and were more potent in improving proliferation and migration of hBMSCs,comparing with PDLSCs in non-strain environment.Alizarin red staining and molecular biology experiments confirmed that treatment of exosomes secreted by PDLSCs under mechanical stimulation led to a significant increase in osteogenic differentiation of hBMSCs in vitro.Meanwhile,in vivo study also indicated that PDLSC-derived exosomes obtained from the 3D strain microenvironment could obviously promote new bone formation.Our findings revealed that mechanical cues profoundly affected the characteristics of PDLSC-derived exosomes,especially for their bio-activity,providing a foundation for using the 3D mechanical microenvironment to enhance the osteo-inductive functions of stem cell-derived exosomes in cell-free therapy for bone regeneration.
文摘Cells in vivo are in a three-dimensional(3D)complicated microenvironment composed of various biological,physical and chemical cues.Although it is well accepted that biological and chemical cues can significantly influence cell functions,more and more evidence has also shown that physical cues are also vital.Using today’s micro and nanoscale technologies,creating synthetic but native-like conditions are the prerequisites for understanding cell behaviors.Most research has been carried out on artificial two-dimensional(2D)substrates.However,recent studies showed that cells respond and behave differently in these 2D settings compared to in 3D intricate microenvironment.Therefore,innovative 3D in vitro cellular models with precisely patterned multiple types of cells are needed for re-creating distinct niches and in vitro cell modeling under well-defined and reproducible conditions.In this talk,I will present the 3D nano and microscale tissue engineering methods we are developing for engineering cell spatiotemporal mechanical microenvironment.
基金support by China Ministry of Science and Technology (973 Project No2009CB930000)Natural Science Foundation of Chongqing Municipal Government (2007BA4004)+1 种基金Program for New Century Excellent Talents in University (NCET-07-0904)"111 project"(B06023)
文摘Biomaterial acts as artificial extracellular matrix for providing a provisional three-dimensional (3D) microenvironments to interact biophysically and/or biochemically with cells to regulate cell behaviors,such as cell adhesion,migration,prolifera-
基金support by Natural Science Foundation of China and Chongqing 50603032 and 2007BA4004Foundation of Chongqing Municipal Government 2007BA4004+2 种基金China Ministry of Science and Technology 973 Project No.2009CB930000Program for New Century Excellent Talents in University NCET-07-0904"111 project"B06023
文摘Biomaterials play essential role in regenerative medicine and tissue engineering,which providing a provisional three-dimensional(3D)microenvironments to interact biophysically and/or biochemically with cells to guide cellular performance[1].It thus spatially and temporally regulates complex cellular process of tissue formation,function and regeneration.
文摘Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.
文摘Combretastatin A-1 phosphate (CA1P) is a tubulin polymerization inhibitor that binds to the colchicine- binding site of tubulin and shows potential anti-tumor activity to acute myelocytic leukemia as reported. We demon- strated that CA1P also showed an outstanding anti-cancer effect on hepatocellular carcinoma (HCC) in vivo and in vitro. As determined by DCFH-DA dye and Western blot, CA1P induced ROS accumulation and apoptosis in HepG2 cells with the down-regulation of Mcl-1. Additonal western blot and immunofluorescence assays further indi- cated that CA1P inhibited Wnt/β-catenin pathway through GSK-3β activition with an increasing of Mcl phosphoryl- ation and subsequent degradation mediated by tubulin-dynactin p l50-AKT signaling pathway axis. Apoptosis of HepG2 cells induced by CA1P was reversed by the GSK-3β inhibitor ( CHIR-99021 ). Furthermore, determined by immunohistochemistry of an orthotopic HCC tumor model, CA1P showed a significantly effect on tumor associated macrophage (TAM) apoptosis in vitro and eliminated TAM in tumor microenviroment in vivo, while the infiltration of Treg cells and expression of TGF-β were also altered. Adoptive transfer of macrophages reinstated tumor growth treated by CA1P. These results indicated that CA1P presented potent potential on the regulation of hepatocellular carcinoma cells and TAMs, and also revealed a novel anti-HCC mechanism of CA1P, which acted on both cancer cells and tumor microenvironment. The findings would be beneficial for exploring new application of anti-microtubu- lar drugs on oncotherapy.