MicroRNAs (miRNAs) are one kind of small RNA in all eukaryote. MicroRNAs can regulate gene expression of eukaryote; they widely participate in every physiological process. They can block mRNA expression or cleave mR...MicroRNAs (miRNAs) are one kind of small RNA in all eukaryote. MicroRNAs can regulate gene expression of eukaryote; they widely participate in every physiological process. They can block mRNA expression or cleave mRNA by complement to target mRNA. Scholars estimate miRNA genes occuping about 1% of genome, but they can regulate 10%-30% genes of whole genome. The genes are regulated by miRNA including signal proteins, enzymes, transcription factors, and so on. In the field of plant research, the start of miRNA research is later, but it is proved that plant miRNAs are important to every plant physiological process. Now miRNA has become the hotspot of plant molecular biology research. This paper introduced the biology function, action mechanism, researching method and recently development of microRNAs, also focused on advances in plant microRNAs. This paper has important reference value for plant stress tolerance miRNA research.展开更多
研究小麦第3组LEA基因中T aLEA2对耐旱和耐盐性能的影响.将小麦第3组LEA基因T aLEA2连接在双元表达载体pB I121 C aM V 35S启动子下游,构建了能在植物中高效表达的载体pB I121-T aLEA2.通过农杆菌介导的真空渗透法,将其转入野生拟南芥中...研究小麦第3组LEA基因中T aLEA2对耐旱和耐盐性能的影响.将小麦第3组LEA基因T aLEA2连接在双元表达载体pB I121 C aM V 35S启动子下游,构建了能在植物中高效表达的载体pB I121-T aLEA2.通过农杆菌介导的真空渗透法,将其转入野生拟南芥中,经抗性筛选及PCR验证,获得T0代转基因植株,并用不同浓度的PEG 4000和N aC l对转基因拟南芥的耐逆性进行检测.结果表明,这些转基因植株可明显改进拟南芥在10%PEG及0.8%N aC l培养基上的生长状态.在实验条件下,转基因拟南芥的耐旱性及耐盐性均有所提高,提示T aLEA2基因在植物水分调节方面有重要作用.展开更多
文摘MicroRNAs (miRNAs) are one kind of small RNA in all eukaryote. MicroRNAs can regulate gene expression of eukaryote; they widely participate in every physiological process. They can block mRNA expression or cleave mRNA by complement to target mRNA. Scholars estimate miRNA genes occuping about 1% of genome, but they can regulate 10%-30% genes of whole genome. The genes are regulated by miRNA including signal proteins, enzymes, transcription factors, and so on. In the field of plant research, the start of miRNA research is later, but it is proved that plant miRNAs are important to every plant physiological process. Now miRNA has become the hotspot of plant molecular biology research. This paper introduced the biology function, action mechanism, researching method and recently development of microRNAs, also focused on advances in plant microRNAs. This paper has important reference value for plant stress tolerance miRNA research.
文摘研究小麦第3组LEA基因中T aLEA2对耐旱和耐盐性能的影响.将小麦第3组LEA基因T aLEA2连接在双元表达载体pB I121 C aM V 35S启动子下游,构建了能在植物中高效表达的载体pB I121-T aLEA2.通过农杆菌介导的真空渗透法,将其转入野生拟南芥中,经抗性筛选及PCR验证,获得T0代转基因植株,并用不同浓度的PEG 4000和N aC l对转基因拟南芥的耐逆性进行检测.结果表明,这些转基因植株可明显改进拟南芥在10%PEG及0.8%N aC l培养基上的生长状态.在实验条件下,转基因拟南芥的耐旱性及耐盐性均有所提高,提示T aLEA2基因在植物水分调节方面有重要作用.