The adaptive mesh refinement (AMR) method is applied in the 2-D Euler multi-component elasticplastic hydrodynamics code (MEPH2Y). It is applied on detonation. Firstly, the AMR method is described, including a cons...The adaptive mesh refinement (AMR) method is applied in the 2-D Euler multi-component elasticplastic hydrodynamics code (MEPH2Y). It is applied on detonation. Firstly, the AMR method is described, including a conservative spatial interpolation, the time integration methodology with the adapitve time increment and an adaptive computational region method. The advantage of AMR technique is exhibited by numerical examples, including the 1-D C-J detonation and the 2-D implosion ignited from a single point. Results show that AMR can promote the computational efficiency, keeping the accuracy in interesting regions.展开更多
In this paper, a process of the quadtree mesh generation is described, then a mesh control device of the tree based mesh generators is analyzed in detail. Some examples are given to demonstrate that the mesh contro...In this paper, a process of the quadtree mesh generation is described, then a mesh control device of the tree based mesh generators is analyzed in detail. Some examples are given to demonstrate that the mesh control device allows for efficient a priori and a posteriori mesh refinements.展开更多
A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface i...A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.展开更多
An essentially conservative adaptive space time conservation element and solution element (CE/SE) method is pro- posed for the effective simulation of shock-induced instability with low computational cost. Its imple...An essentially conservative adaptive space time conservation element and solution element (CE/SE) method is pro- posed for the effective simulation of shock-induced instability with low computational cost. Its implementation is based on redefined conservation elements (CEs) and solution elements (SEs), optimized interpolations and a Courant number insensitive CE/SE scheme. This approach is used in two applications, the Woodward double Mach reflection and a two- component Richtmyer-Meshkov instability experiment. This scheme reveals the essential features of the investigated cases, captures small unstable structures, and yields a solution that is consistent with the results from experiments or other high order methods.展开更多
We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstru...We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.展开更多
基金Sponsored by the National Natural Science Foundation of China(10676120)Laboratory of Computational Physics Foundation(9140C690101070C69)
文摘The adaptive mesh refinement (AMR) method is applied in the 2-D Euler multi-component elasticplastic hydrodynamics code (MEPH2Y). It is applied on detonation. Firstly, the AMR method is described, including a conservative spatial interpolation, the time integration methodology with the adapitve time increment and an adaptive computational region method. The advantage of AMR technique is exhibited by numerical examples, including the 1-D C-J detonation and the 2-D implosion ignited from a single point. Results show that AMR can promote the computational efficiency, keeping the accuracy in interesting regions.
文摘In this paper, a process of the quadtree mesh generation is described, then a mesh control device of the tree based mesh generators is analyzed in detail. Some examples are given to demonstrate that the mesh control device allows for efficient a priori and a posteriori mesh refinements.
基金supported by the Open Project of Key Laboratory of Aerospace EDLA,CASC(No.EDL19092208)。
文摘A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10732010,10972010,and 11028206)the Opening Project of State Key Laboratory of Explosion Science and Technology,China (Grant No.KFJJ13-5M)
文摘An essentially conservative adaptive space time conservation element and solution element (CE/SE) method is pro- posed for the effective simulation of shock-induced instability with low computational cost. Its implementation is based on redefined conservation elements (CEs) and solution elements (SEs), optimized interpolations and a Courant number insensitive CE/SE scheme. This approach is used in two applications, the Woodward double Mach reflection and a two- component Richtmyer-Meshkov instability experiment. This scheme reveals the essential features of the investigated cases, captures small unstable structures, and yields a solution that is consistent with the results from experiments or other high order methods.
基金the National Energy Research Scientific Computing Center,a DOE Office of Science User Facility supported by the Office of Science,U. S.Department of Energy under Contract No.DEAC02-05CH11231LBNL under DE-AC0205CH11231 was supported by the Director,Office of Science of the U.S.Department of Energy and the Petascale Initiative in Computational Science and Engineering+1 种基金LLNL was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Security,LLC,Lawrence Livermore National Laboratory under Contract DE-AC5207NA27344UCLA and LLNL acknowledge UC Lab Fees Research Grant 09-LR-04-116741-BERA
文摘We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.