Microstrip transmission lines connecting to the millimeter wave radar chip and antenna significantly affect the radiation efficiency and bandwidth of the antenna.Here,a wideband non-uniform wavy microstrip line for co...Microstrip transmission lines connecting to the millimeter wave radar chip and antenna significantly affect the radiation efficiency and bandwidth of the antenna.Here,a wideband non-uniform wavy microstrip line for complex impedance in automotive radar frequency range is proposed.Unlike the gradient transmission line,the wavy structure is composed of periodically semi-circular segments.By adjusting the radius of the semi-circular,the surface current is varied and concentrated on the semi-circular segments,allowing a wider tunability range of the resonant frequency.The results reveal that the bandwidth of the loaded wavy transmission line antenna improves to 9.37 GHz,which is 5.81 GHz wider than that of the loaded gradient line.The gain and the half power beam width of the loaded antenna are about 14.69 dB and 9.58°,respectively.The proposed non-uniform microstrip line scheme may open up a route for realizing wideband millimeter-wave automotive radar applications.展开更多
Background Transgenic research in crops involves using genetic engineering techniques to introduce specific genes of interest from other organisms,or even entirely new genes into plant genomes to create crops with des...Background Transgenic research in crops involves using genetic engineering techniques to introduce specific genes of interest from other organisms,or even entirely new genes into plant genomes to create crops with desirable traits that wouldn’t be possible through conventional breeding methods.Transgenic crops have been developed for various traits globally.Whitefly,Bemisia tabaci(Gennadius)is one of the major sucking pests of cotton that cause significant damage to the cotton production.To combat whitefly infestations,researchers have developed four transgenic cotton lines expressing the fern protein.And those transgenic lines need to be evaluated for their performance against the target pest—whitefly.The evaluation was designed as controlled trials in polyhouse or muslin cloth cages under open-choice and no-choice conditions by comparing four transgenic cotton lines(A,B,C,and D)with three control groups,including untransformed cotton plants with a same genetic background of the transgenic line,conventionally bred whitefly-resistant cotton,and whitefly-susceptible cotton.In order to study the generational effect,the evaluation also involved studies on whitefly development in laboratory,muslin cloth cage,and polyhouse conditions.Results Both open-choice and no-choice experiments had shown that all the four transgenic cotton lines(A,B,C,and D)expressing the fern protein reduced adult whitefly numbers significantly compared with the control lines,except for the no-choice conditions in 2021,where the transgenic line C was non-significant different from the resistant control line.Notably,the nymphal population on the resistant control line was relatively low and nonsignificant different from the transgenic line C in 2021;and the transgenic lines A and C in 2022 under open-choice conditions.Under no-choice condition,the nymphal counts in the resistant control line was non-significant different from transgenic lines C and D in 2021;and transgenic line D in 2022.All transgenic lines showed significant decrease in egg hatching in 2021 and nymphal development in 2022,except for the transgenic line C which had no significant different in the nymphal development comparing with non-transgenic control lines in 2022.Adult emergence rates in both years of evaluation showed significant decrease in transgenic lines A and B comparing with the control lines.Additionally,the results showed a significant reduction in cotton leaf curl disease and sooty mold development in all the four transgenic lines compared with susceptible control under open-choice conditions,indicating potential benefits of transgenic lines beyond direct effect on whitefly control.Furthermore,the research explored the generational effects of the fern protein on whitefly which revealed the lowest fecundity in the transgenic line C across F0,F1 and F3 generations,lower egg hatching in F1 and F2 generations in transgenic lines A and B,shorter nymphal duration in F1 and F2 generations in transgenic line B,and the least total adult emergence in the transgenic line C in F0 and F3 generations.Conclusions These findings suggest that the transgenic cotton lines expressing fern protein disrupts whitefly populations and the life cycle to a certain extent.However,results are not consistent over generations and years of study,indicating these transgenic lines were not superior over control lines and need to be improved in future breeding.展开更多
介绍了STEP-NC的概念、数据模型及其结构特点,然后通过对比MLP(Machining Line Planner)和STEP-NC数控程序对特征和操作的不同定义方法,分析了在MLP中特征及加工工艺与STEP-NC的对应关系,探讨了在MLP中实现输出STEP-NC格式的零件加工程...介绍了STEP-NC的概念、数据模型及其结构特点,然后通过对比MLP(Machining Line Planner)和STEP-NC数控程序对特征和操作的不同定义方法,分析了在MLP中特征及加工工艺与STEP-NC的对应关系,探讨了在MLP中实现输出STEP-NC格式的零件加工程序的方法。展开更多
基金Supported by the National Natural Science Foundation of China( 61974104)。
文摘Microstrip transmission lines connecting to the millimeter wave radar chip and antenna significantly affect the radiation efficiency and bandwidth of the antenna.Here,a wideband non-uniform wavy microstrip line for complex impedance in automotive radar frequency range is proposed.Unlike the gradient transmission line,the wavy structure is composed of periodically semi-circular segments.By adjusting the radius of the semi-circular,the surface current is varied and concentrated on the semi-circular segments,allowing a wider tunability range of the resonant frequency.The results reveal that the bandwidth of the loaded wavy transmission line antenna improves to 9.37 GHz,which is 5.81 GHz wider than that of the loaded gradient line.The gain and the half power beam width of the loaded antenna are about 14.69 dB and 9.58°,respectively.The proposed non-uniform microstrip line scheme may open up a route for realizing wideband millimeter-wave automotive radar applications.
文摘Background Transgenic research in crops involves using genetic engineering techniques to introduce specific genes of interest from other organisms,or even entirely new genes into plant genomes to create crops with desirable traits that wouldn’t be possible through conventional breeding methods.Transgenic crops have been developed for various traits globally.Whitefly,Bemisia tabaci(Gennadius)is one of the major sucking pests of cotton that cause significant damage to the cotton production.To combat whitefly infestations,researchers have developed four transgenic cotton lines expressing the fern protein.And those transgenic lines need to be evaluated for their performance against the target pest—whitefly.The evaluation was designed as controlled trials in polyhouse or muslin cloth cages under open-choice and no-choice conditions by comparing four transgenic cotton lines(A,B,C,and D)with three control groups,including untransformed cotton plants with a same genetic background of the transgenic line,conventionally bred whitefly-resistant cotton,and whitefly-susceptible cotton.In order to study the generational effect,the evaluation also involved studies on whitefly development in laboratory,muslin cloth cage,and polyhouse conditions.Results Both open-choice and no-choice experiments had shown that all the four transgenic cotton lines(A,B,C,and D)expressing the fern protein reduced adult whitefly numbers significantly compared with the control lines,except for the no-choice conditions in 2021,where the transgenic line C was non-significant different from the resistant control line.Notably,the nymphal population on the resistant control line was relatively low and nonsignificant different from the transgenic line C in 2021;and the transgenic lines A and C in 2022 under open-choice conditions.Under no-choice condition,the nymphal counts in the resistant control line was non-significant different from transgenic lines C and D in 2021;and transgenic line D in 2022.All transgenic lines showed significant decrease in egg hatching in 2021 and nymphal development in 2022,except for the transgenic line C which had no significant different in the nymphal development comparing with non-transgenic control lines in 2022.Adult emergence rates in both years of evaluation showed significant decrease in transgenic lines A and B comparing with the control lines.Additionally,the results showed a significant reduction in cotton leaf curl disease and sooty mold development in all the four transgenic lines compared with susceptible control under open-choice conditions,indicating potential benefits of transgenic lines beyond direct effect on whitefly control.Furthermore,the research explored the generational effects of the fern protein on whitefly which revealed the lowest fecundity in the transgenic line C across F0,F1 and F3 generations,lower egg hatching in F1 and F2 generations in transgenic lines A and B,shorter nymphal duration in F1 and F2 generations in transgenic line B,and the least total adult emergence in the transgenic line C in F0 and F3 generations.Conclusions These findings suggest that the transgenic cotton lines expressing fern protein disrupts whitefly populations and the life cycle to a certain extent.However,results are not consistent over generations and years of study,indicating these transgenic lines were not superior over control lines and need to be improved in future breeding.